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Abstract—Information and communication technology (ICT)
is already a major driver in the automotive industry. Most of
the new features and innovations over the past 10 years were
enabled by ICT, still the usage of ICT in today’s vehicles lacks
behind it’s possibilities. By introducing new service-oriented ICT
architectures for future vehicles the industry tries to simplify
the development and verification process as well as enabling
Plug&Play capabilities in cars. As the current discussion shows,
these new architectures will be built-on centralised computing
units with high processing power using only one communication
medium. Software components will be running as services inside
and outside of the vehicular network.

As this is a revolution in automotive software development,
this paper gives an overview of the state of the art in research
and industry regarding the design and deployment of novel
ICT architectures. Based on this survey we extract the key
attributes for service classification in the automotive domain and
give an example on how to use this classification to control the
communication between services, by arranging them accordingly.

I. INTRODUCTION

Information and communication technology (ICT) is already
a major driver of the automotive industry. Thus Electrics,
electronics and software in vehicles are essential for the
competitiveness. Already in 2007 M. Broy determined that
ICT contibutes up to 50% to the total value of a car and
nearly 80% of inovations in the automotive sector were a
direct product of the technology transfer from the domain
of computer systems [1]. In respect to electric mobility ICT
becomes the backbone of all relevant functions [2]. As most
of the functions of today’s cars are realised in software com-
ponents, the demand for processing power and data bandwidth
has increased drastically. At the same time the integration
effort increases, as the impact of existing functions is harder
to predict [3]. For this reason architectures and technologies
for ICT in vehicles can no longer be viewed as evolutionary
innovations, as this would result in a rise of complexity, which
becomes to hard to manage. Instead the ICT architectures
must be revised so far-sightedly, that they can perform their
indisposable role in future cars [2].

The automotive industry recently introduced new standards
and plans for future projects, realising a new ICT architec-
ture [4]. The main concepts are a centralised communication
medium, most likely real-time Ethernet and a service oriented
software development. Each component will be realised as a

service and therefore provide an interface for all data exchange
and interactions. With the introduction of services to the
automotive domain, new challenges and problems will rise.
The new open and service based ICT architecture will need to
control the communication between services with very differ-
ent requirements. As in a centralised architecture the driving
related services will no longer be separated from passenger
related services, two worlds of software development will
crash into each other. On the one side there are services
with long development cycles and high demands on real-time
and security, on the other side services with fast development
cycles and lower real-time standards. Therefore, these services
need to be arranged in an information architecture which will
define communication flows and access restrictions.

This paper aims to define the key classification criteria for
automotive services and designs an information architecture
for service arrangements based on multiple of these criteria.
It is structured as follows. In section II the state of the art
in research and industry on creating a new service-oriented
ICT architecture will be presented. At first the requirements of
automotive ICT architectures will be illustrated. Afterwards we
take a look at migration strategies of legacy systems to begin
the deployment of new ICT architectures.Furthermore, one so-
lution for a new and dynamic software platform for automotive
ICT architectures, the AUTOSAR Adaptive Platform is de-
scribed. At last the challenge of service arrangement and com-
munication flows in novel service-oriented ICT architectures
are shown. Section III will present the results of our research
in defining criteria for service classifications. To gain insight
in important attributes a service composition experiment was
conducted. We describe a simple scenario, its realisation and
the results. Based on the results, key attributes of automotive
services will be described and we analyse different criteria
for service classification. By designing a hierarchical service
architecture based on classification criteria, we try to solve the
problem of service arrangement in future ICT architectures.
Section IV concludes the paper and explains lessons learned
as well as describes future work.

II. RELATED WORK

Several ongoing research and industry efforts are aiming at
developing a new ICT architecture for vehicles. The following
sections will describe the state of the art in research and the
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main concepts developed by different research teams in the
field of creating a new automotive ICT architecture.

A. Requirements of Automotive ICT Architectures

Over the past 30 years there were many innovations in
the automotive domain. Most of them were enabled by the
introduction of information and communication technology
(ICT) in form of electronics and software in vehicles . ICT has
already a big impact on the market value of a modern car. [2]
and [2] present critical aspects of the current vehicle software
architecture and define requirements for future architectures.
In detail:

1) Today’s Architecture: With the growing need of func-
tionalities and the high influence of such features on the market
value, the architecture of hardware and software in today’s
vehicles was developed in an evolutionary way [3]. Existing
systems were modified, extended and interconnected with new
components to enable new features. This process leads to
several problems, some mentioned below [2], [3]:

e High hardware overhead: With over 70 to 100 different
interconnected electronic control units (ECU’s), modern
vehicles are wasting resources of micro controllers and
networks.

o Heterogeneous networks: One car has various networks
for different demands in communication (e.g. time-
triggered, priority based, etc.) which makes the develop-
ment and integration process even more challenging.

o Increasing demand for interconnectivity and bandwidth:
Most safety functions in cars use data-fusion approaches
to get a complete state of the environment. This increases
the demand in bandwidth and quality-of-service.

o Complex system verification: Heterogeneous networks
and black-box ECU’s make the system verification pro-
cess very complex. The integration of cross-domain func-
tionality increases the testing costs.

e Limited flexibility: Today’s ICT architecture is developed
and tested in a static configuration which makes it hard
to add components after-sale.

By introducing a new more dynamic ICT architecture in
vehicles, these problems need to be solved. It is important to
take into account that this will also introduce new challenges.
For example the new architecture must be introduced without
lowering the security requirements on automotive software.

2) Future Architecture: As figure 1 shows, there is an
evident trend for architectures to become more complex than
required, considering the evolutionary development of vehicle
architectures and the complexity growth over time. Only a
revision of the architecture and the use of new technology can
bring the complexity down. [2] This could results in much
smaller integration costs and an increasing innovation curve.
As shown in figure 1, this process has already been observed
in the past. For example in 1980 the rise of complexity lead
to the introduction of micro controllers and new bus systems
like CAN.

To solve the problems described in the Today’s Architecture
section, the papers [2], [3] suggest the use of the following
main concepts for a hardware architecture:

o Centralised computer architecture: 1CT Architecture
based on centralised scalable computing units, which
execute all hardware independent functions.

o Highly integrated mechatronic components: Sensors and
actuators become smart components with standardised
data interfaces.

e Standardised communication backbone: All bus systems
in vehicles will be replaced by one, probably real-time
Ethernet.

Although it is not the only communication medium, Eth-
ernet is already in use in today’s vehicles and integrated
mechatronic components have already been introduced, e.g.
in the BOSCH Chassis Systems Control [5].

For the software architecture there are some design princi-
ples to consider:

e Data-centric paradigm: In a data-centric system, each
component describes the communication properties it
supports and requires. This leads to a virtually decoupled
system.

o Extra-functional properties: Operating systems and
middleware technologies also need to take extra-
functional properties like timing, fault tolerance and
security guarantees into account.

e Plug&Play capabilities: Standardised plugs and sockets
at the hardware level and protocols at software level must
be defined to support the detection of new components
and the exchange of information needed for the integra-
tion.

e Resource awareness: A Plug&Play mechanism needs in-
formation about available resources to be fully functional.
Dedicated components need to manage resources for
safety critical and non-safety critical functions to satisfy
the components extra-functional properties.

o Integrated services: Base services need to be imple-
mented at platform level offering frequently needed
functionality, like abstraction of communication infra-
structure, sensor and data fusion, and functional safety
and security concepts.

Although the task to introduce a new ICT architecture in ve-
hicles is challenging, the advantages gained by such a change
will be worth the effort [3]. As new automotive manufacturers
like Tesla have shown, the introduction of electric vehicles
opens up the automotive market for new competitors. As a
change in the drivetrain concept demands radical changes in
the ICT architecture, electric mobility is a chance to introduce
a new system architecture and new competitors will accept
this challenge. In designing a new ICT architecture one has to
make sure to offer migration and deployment strategies to the
established OEM’s, as they will need to adept to these changes
to stay in the automotive market.
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Fig. 1. Evolution of complexity in ICT architectures. [2]

B. Migration and Deployment

In the automotive industry legacy plays an important role
[3]. Thus it is necessary for a new ICT architecture to
enable the migration of well tested and proven components.
This can be achieved by creating standards. As the main
organization for standardisation of the automotive industry
is AUTOSAR, they adopted the challenge of opening up
there well-established system architecture for a new ICT
architecture.

A research group of the Dept. of Computer Science of the
SCT College of Engineering in Trivandrum India presents the
challenges and advantages of a Service Oriented Architecture
based connectivity of automotive ECUs and gives a summary
of AUTOSAR standards and technologies solving these chal-
lenges [6].

Service Oriented Architecture (SOA) is an efficient and
flexible way of interconnecting systems. It encapsulates the
work performed by a system into a service, which can be
accessed by a client using XML messages. SOA provides a
loosely coupled way of interconnecting heterogeneous systems
in efficient ways.

The use of Ethernet and demand for embedded Ethernet
technology solutions in the automotive embedded system
industry, paved the way for the possibility of using SOA in
automotive embedded systems.

According to the paper [6], a feasibility study is the first
and most important step to introduce SOA in automotive
components. The authors name AUTOSAR as one important
player that took the challenge and tried to integrate SOA in
the AUTOSAR platform. By introducing SOME/IP (Scalable
service-Oriented MiddlewarE over IP [7]) to the AUTOSAR
platform in version 4.2.1 they created a serialization protocol

with remote procedure call mechanism. This protocol solves
the problems of data transportation (AUTOSAR std. 809, [8]),
data serialisation for compatibility to all systems (AUTOSAR
std. 637, [9]), service discovery in the network (AUTOSAR
std. 616, [10]) and the transformation of ECU modules into
services and methods (AUTOSAR std. 660, [11]). This ar-
chitecture provides the capability of integrating SOA to the
automotive embedded system without affecting the existing
components.

With this integration of SOA and Ethernet, AUTOSAR has
established a migration strategy for proven software com-
ponents. Nevertheless, this system architecture doesn’t solve
the problems and challenges described in II-A. Therefore, a
dynamic software platform is needed.

C. Dynamic Software Platform

Over the past 10 years AUTOSAR has been established
as the organization and main driver for the standardisation
for software infrastructure in the automotive industry. As
a reaction on upcoming demands and new functionalities,
AUTOSAR restructured it’s portfolio. The introduction of the
AUTOSAR Adaptive Platform is the result of adopting the
new challenges of a dynamic software platform.

Members of the BMW Group, as a partner of the AU-
TOSAR organisation, name the key aspects of the new ar-
chitecture and describe the structure and components of the
AUTOSAR Adaptive Platform [12]. A summary is given
below.

The initial version of the AUTOSAR Adaptive Platform was
released in march 2017 [13].

1) Key Aspects: A new architecture has to consider the
following two key aspects:



o Integration of heterogeneous software platforms: The
networking architecture of today’s cars can be clustered
into different domains (e.g. infotainment, chasis or pow-
ertrain) which already use different computer and soft-
ware architecture. While infotainment ECUs usually use
Linux, the AUTOSAR Classic Platform is the standard
for deeply embedded ECUs. The new use cases demand
a third type of ECUs with a higher computing power. All
of these three platforms need to be interconnected.

o Service oriented and signal based communication: The
traditional communication is based on ECUs broadcasting
signals to other ECUs. This fits well for control data of
limited size, which has to be communicated cyclically.
The new use cases, like highly automatic driving, have
higher payload demands and Ethernet as a communica-
tion system requires more sophisticated protocols. With
the concept of service oriented communication, applica-
tions provide a service on the communication system.
Other applications can subscribe to these services and the
data will only be sent to subscribers. The combination of
the two types of communication is the second key aspect
for a new ICT architecture.

2) Architecture and Components: Figure 2 shows the over-
all architecture of the AUTOSAR Adaptive Platform. The main
goal is to provide a stable programming interface to applica-
tion developers, called the AUTOSAR Runtime for Adaptive
Applications. The interface consists a standard interface for
accessing operating system functionalities as well as a commu-
nication middleware, which allows communicating with local
and remote applications as well as the Adaptive AUTOSAR
Services over SOME/IP [7]. Another goal is to smoothly
integrate the platform into existing E/E architectures based
on Ethernet. The Module Application Execution Manager is
responsible for startup and shutdown of the ECU and the
applications. It has to take care that the necessary ressources
for the applications are available.

In future releases features to implement the new use cases
should be provided. This includes support for fail-operational
systems, enhanced safety and security features and the inte-
gration of Car2X communication.

D. Arrangement of Services

With the introduction of a novel dynamic and open ICT
architecture a major challenge is the arrangement of services.
As there are many different kinds of services communicating
in the same network it is important to create a structure, defin-
ing who may communicate with whom and which messages
might need prioritisation.

One solution for the arrangement of services was given by
researchers at fortiss GmbH in Munich Germany. They pre-
sented several concepts for hierarchical information architec-
tures in the automotive domain [14] and identified key research
topics, as well as open issues for adopting these concepts
in practice, with respect to proper layering and information
exchange. There focus was on the technical aspects for design
and development of hierarchical information architectures,

disregarding most non-technical topics. They explained the
important factors of a hierarchical information architecture re-
garding communication flow, layer traversal, meta-information
and architecture design, as well as the upcoming research
aspects. This is summarised below.

1) Hierarchical Information Architectures: The described
hierarchical information architecture is shown in figure 3. They
name the following requirements and conditions:

o Communication flows: They distinguish between three
different kinds of communication flows:

— Vertical or inter-layer communication refers to an
information exchange between different architectural
layers and should be permitted. Data transformation,
fusion and arbitration should be used to bridge the
semantic gap between different layers.

— Horizontal or intra-layer communication refers to an
information exchange between different subsystems
inside an architectural layer and should be permitted.
Otherwise it would be necessary to always move
up in the hierarchy and down again, which is not
only cumbersome, but could also result in increased
latency and reduced performance.

— Diagonal or foreign sub-tree communication refers
to an information exchange between both differ-
ent architecture layers and different subsystems and
should be prohibited. Otherwise it would bypass the
main idea of hierarchical architectures of encapsu-
lating sub-trees of functionality from higher layers.
This mechanism is very important and leads to higher
level of abstraction.

o Layer traversal: There are two design choices regarding
how to traverse (multiple) layers in a hierarchical archi-
tecture:

— Opagque layers allowing components to access only
they layers directly above or below. This leads to
higher abstraction and better information hiding for
safety and security aspects, but might also lead to
higher latency.

— Transparent layers allowing the access of either only
lower layers or all layers of the system. This might
be needed to reduce latency, but should be avoided
if possible because it undermines the main reasons
for hierarchical information architectures.

o Meta-information and non-functional concerns: In hier-
archical and layered architectures one significant problem
is the loss of information due to abstraction between
different layers. This problem could be solved by ap-
pending meta-information to the data. On the other hand
at run time there are also non-functional concerns such
as latency or guaranteed response time which could also
be added as meta-information.

e Architecture design: For the design and construction of
the hierarchical information architecture one has to match
two key aspects of automotive systems:
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Fig. 2. Architecture of the AUTOSAR Adaptive Platform. [13]

— Physical aspects refer to either spatial/ connectivity
based hierarchy categories, ordering functions based
on location and connectivity or temporal hierarchy
categories, ordering functions based on latency and
cycle time.

— Logical aspects refer to either abstraction based
hierarchy categories, ordering functions based on
the level of abstraction they represent or relational
hierarchy categories, ordering functions based on
dependencies between components.

2) Research Challenges: Beside the described architecture
the authors also name important research challenges and ar-
gue for an interdisciplinary approach, including cross-domain
concerns and different viewpoints from research areas. As
important areas they define! :

o Design conflicts

o Information exchange, data fusion and arbitration

o Hierarchical scheduling

o Safety and security

o Testing and verification
As described above for the architectural design there are
many different criteria to arrange services accordingly in a
hierarchical architecture. The question how to organize the
services in the new structure stays open.

III. CLASSIFICATION OF AUTOMOTIVE SERVICES

Automotive software development standards are currently
undergoing big transformations. In adopting the challenges
on future ICT architecture in vehicles and introducing new
standards, the automotive industry paves the way for service-
oriented automotive software. The change from defined con-
trol loops and decoupled bus systems, to a centralised ICT

'More detailed information can be found in [14].

Fig. 3. An example of a hierarchical information architecture with layer
separation. The architecture represents a tree of information and, by extension,
functionality with fixed nesting. Information flows are only allowed inside a
layer (horizontal), as well as to direct ancestors or descendants (vertical). Any
access to a foreign sub-tree (diagonal) is forbidden in order to achieve proper
encapsulation. [14]

architecture with only one communication medium and every
software component realised as a service, is a revolution in
the field of automotive software and will enable comfort in
development as well as produce new problems and challenges.

Although many components might stay in encapsulated
control loops, most components will be realised as services.
Sensors will provide there data as a service and actuators
will provide interfaces for controlling. These Automotive
services need to comply the "SPUR” requirements: Secure,
Privacy preserving, Usable, and Reliable [15]. Accepting these



requirements a service will be defined with an interface for the
different access methods and interact with other services threw
a middleware provided by the ICT architecture.

In such an open ICT architecture there will no longer be a
strict separation of passenger and driving related services” any
more. Every service could theoretically interfere with every
other service. It is the task of a future service architecture
to enable access restriction and encapsulation of subsystems
as described in section II-D. Therefore meta-information of
services is needed to add a level of control.

Section III-A describes an experiment of service composi-
tions and interactions. The goal is to get an idea on important
aspects and classification criteria for automotive services.
Afterwards, section III-B adds on to this subject by defining
criteria and attributes for service classifications. Based on these
criteria, a design for a hierarchical information architecture
based on multiple service classifications is presented in section
I-C.

A. Service Composition Experiment

To gain insight in important service attributes and classi-
fication criteria, some example services were created. These
services were composed to a scenario with the goal to expe-
rience interfaces and interactions of services. The following
sections will describe the scenario it self, the realisation and
the services that were build as well as the first results.

1) Scenario: The example scenario needed to represent
different service attributes with different requirements. One
important feature of future cars is the usage of cloud services
and the provision of data to the cloud. So the location of the
services should vary. Furthermore, the car will provide sensor
data to cloud applications and will request services of the cloud
as well. The scenario was chosen to get a first impression
on service interactions, including vehicle internal and external
services of different abstraction levels.

As a result, services for a very simple navigation scenario
were implemented. The navigation should use the drivers
personal calendar to determine the next destination. To refine
route calculation, sensor data of the car like temperature and
rain intensity is provided to cloud applications. This way the
cloud can determine roads which might be slippery and avoid
them in route calculation.

2) Realisation: For the implementation simple Spring?
RESTful* Web Services were used to reduce the implementa-
tion time. As a result the following services were implemented:

e Navigation Service: With data structures including map
images and route calculation. (connected with here APD)

2Passenger related services are all services regarding the passenger in-
cluding for example entertainment and environment control. Driving related
services on the other hand are all services regarding the vehicles drivetrain.

3Spring is a framework to create and access WebServices. It is implemented
in the JAVA programming language. For more information: https://spring.io/

4Represcntational state transfer (REST) or RESTful Web services are one
way of providing interoperability between computer systems on the Internet.

SHere provides different APIs for route calculation and maps: https:
//developer.here.com/develop/rest-apis

e Calendar Service: Request the upcoming events from a
Google Calendar®.

e Navigation Controller Service: Composing the Naviga-
tion for the user. The user can choose from locations
of calendar items or decide to enter another location to
calculate a route for and display it.

o Rain and Temperature Sensor Services: Providing dummy
data to the cloud.

e Data Collection Service: Collecting rain and temperature
data in a data base.

Afterwards the services were composed running on the same

device as well as running on separate servers in a network.

3) Results: Although this is a very simple example scenario

it showed some important aspects of service development.
Through the usage of external services with documented
interfaces like the Google Calender API or here APIs, the
importance of type safety and API consistency were noticed.
The better the documentation, the easier the service can be
integrated into a new scenario. On the other hand the impact
of the location regarding latency due to the distance between
the services could be recognized. This must be represented
in the arrangement of services in a novel architecture as
well. Another aspect could be determined by having multiple
services accessing one at the same time. The decision of
prioritisation and who to trust becomes important. What if one
input says go left and the other one says go right? Therefore
services need to be categorized and classified.

B. Service Classification

By classifying services with attributes one can extract
the differences in requirements of automotive services. This
enables future services as well as the service platform for
better decision making, for example regarding access rights
and meeting execution deadlines. On the other hand, these
classification attributes could be used for the arrangement of
services in (hierarchical / layered) information architectures.
Below multiple approaches for service classification and dif-
ferent attributes are examined.

1) Service Domain: When trying to define requirements
and attributes of services, the service domain is a good starting
point, as it has a big influence. Typically automotive software
will be categorised in the following domains [15]:

e Multimedia: Refers to services regarding entertainment

as well as navigation systems.

e Passenger / Comfort: Refers to services regarding
the passengers comfort, like climate control unit and
personalisation of the car.

o Safety electronics: Refers to services of safety critical
ECUs, like the anti-lock braking system.

e Engine / drivetrain: Refers to services regarding the
engine and drivetrain, like automatic transmission or
battery management in E-cars.

e Diagnostics: Refers to services surveying the operation of
the car. This software needs to recognise malfunctioning

%Google Calendar provides an API to access calendar data: https:/
developers.google.com/google-apps/calendar/
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components and communicate them to the driver and the
repair shop.

Although these domains will incorporate most of the new
services, when talking about future ICT architectures there
will be services that might not fit into one of these domains .
Therefore, a more generous domain should be introduced.

o Integrated services: Refers to services which are provided
by the platform to help the developers. This includes
operating system functions, as well as functions provided
by the ICT architecture environment. Examples may
be the abstraction of communication, service discovery,
automated updating, and safety /security management. As
future ICT architectures will be mostly structured for data
communication and processing (described in section II-A
and II-D) there will be additional services regarding this
domain, like data collection, data fusion, data processing
and data base services.

Looking at this shows the variety of domains for automotive
services and gives a slight insight on differences in require-
ments of such services.

2) Service Location: Another key aspect to find require-
ments and attributes of a service is where it is located in
the service network. This has a big impact on response time
and safety requirements. The following three locations will be
differentiated:

o Internal vehicular network: Refers to services which are
located in the internal vehicular network, running on
small ECUs, multi-core ECUs and multimedia systems.
In a future ICT architecture these service will most likely
be connected via Ethernet and can communicate without
a high latency due to round trip times and transfer rates.

e Cloud servers: Refers to services which are located
outside the vehicle and running on Cloud servers accessed
via Internet. These services might have longer response
times due to latency.

e Local ad hoc Networks: Refers to services which are
located outside the vehicle and are connected in a local
wireless ad hoc network. This includes IoT devices on
streets and traffic lights, services running in other cars, as
well as on smart phones. These networks are slower than
the internal vehicular network and might have a higher
latency. Nevertheless, the connection will still be much
faster than to Cloud servers in the Internet.

The location of a service is obviously a key aspect in service
interactions as it has a big impact on quality-of-service aspects,
like communication latency. On the other hand, the usage of
external services opens up the new topic of security. Different
questions surface, like who has access to in car services open
and who to trust.

3) Service Trust Status: In open ICT architectures with
software of different providers running on the same component
as well as in the same network, the access rights need to be
controlled. A new information architecture needs to take care
of the trust status of a service. To solve this issue it is important

to introduce a trust hierarchy. There are different mechanisms
to consider in trust hierarchies:

o Trust certificates: A service can be certified by a certifi-
cation authority. In trust hierarchies there is always one
authority that has the trust of all entities. This central
authority can either give directly certify every service
or like in a chain of trust, create certificates for other
authorities below it and creates a chain.

o Trust levels: Another option is to only trust services for
a certain level. For example this could be based on the
domain, or on the abstraction level. One solution is a trust
pyramid with different access levels. This way services
may have access to other services based on there security
level.

Integrating trust mechanisms into automotive services could
help in solving many security problems created by the open
ICT architecture.

4) Service Access Method: Looking at examples of existing
service architectures in the World Wide Web one can identify
different access methods on how to interact with a service. The
different access methods might be secure or insecure. There
are two categories of access methods:

e Read only: As read only service access methods do not
change any data at the corresponding service. They are
considered to be secure in this way. This access method
could be compared with standard get/head requests re-
alised in Web Services.

e Read / Write: As read / write service access methods do
change the data at the corresponding service. They are
considered being insecure in this way. This access method
could be compared with standard set/put/post and delete
requests in Web Services.

By defining service access methods, the ICT architecture
can be labelled much saver. Certain services might get read
permissions, others read/write and some may not be allowed
to access services at all.

Another method of service interaction that will be used
and needs to be supported by a novel ICT architecture is
the publish / subscribe mechanism. As described in section
II-C1 the service communication needs to enable cyclic data
broadcasting, which can be enabled by publish /subscribe
patterns.

5) Service Attributes: Thinking about service classifications
there is not one single aspect to look at. It’s not enough to say
a service is driving related or passenger related. It’s not enough
to name the domain or location of a service. Instead a service
based information architecture for future vehicles needs to pro-
vide the possibility to attach meta-information to methods and
services as well as messages and data-types (as described in
II-D). To provide meta-information for services and interfaces
one has to define the key attributes of an automotive service.
There are different viewpoints for such meta-information, e.g.
a client needs different meta information of a service than the
execution environment. The following attributes need to be
taken into account.



o Identifier, Name, Version

o Domain

o Location

o Class / abstraction level

o Access Methods

o Vendor Id

o Certification

o Auvailability

« Execution time (guaranteed)
« Execution cycle

e Scope / Access limitations
« Life cycle / update cycle

o Deadline

o Safety / Security requirements

C. Hierarchical Service Architecture Based on Classification

After gaining some insight in attributes and classification
criteria for services, the next step is trying to find an architec-
ture for the arrangement of automotive services. Starting with
the hierarchical layered information architecture described in
II-D, there are still many open questions. We tried answer-
ing some of them, with an enhancement of the presented
architecture regarding the design conflict of the arrangement
paradigm, the information exchange between services and a
basic approach for safety and security.

We adopted the main concepts of the hierarchical archi-
tecture for communication flows, to achieve a well-structured
and organised architecture with encapsulating sub-trees. For
better information hiding the opaque layer design was chosen
for the layer traversal. On the other hand as shown above,
the classification of automotive services is a way to complex
subject to have a flat architecture with only one type of classifi-
cation. Figure 4 shows the designed approach for a hierarchical
information architecture based on service classification.

Each automotive service domain has its own sub-tree in
the hierarchy. The services are arranged according to there
abstraction level, from low level abstraction at the bottom to
high level abstraction at the top. Furthermore, there are three
basic service locations visualized: In-Car, Cloud and IoT. Due
to latency, connections can be marked as slow, normal or fast.
The fast connections are express lanes, to skip multiple layers
and access a service on a different level, without passing
high latency routes. To incorporate the trust status into this
architecture we decided to introduce trust guards. These will
only allow services with a high enough trust level to access
the service interface. For safety aspects it is also possible to
only allow communication in one direction.

With the introduction of multiple classification criteria and
attributes, the arrangement of services should be much easier
to accomplish. Another important feature is the introduction of
slow and fast lanes into the communication, as now applica-
tions with tight deadlines have the opportunity to get a faster
data flow. On the other hand the introduction of trust guards
is only a starting point, in giving the architecture a safety and
security aspect. More research will be needed in this regard.

IV. CONCLUSION

This paper gave an overview of the state of the art in
research and industry on ICT architectures in future vehicles.
It described the trends and open research aspects as well
as named some changes that are already applied in the
AUTOSAR Adaptive Platform. With the introduction of ser-
vices, the new challenge of service arrangement is described.
Based on these aspects of new ICT architectures and service
arrangements, we define the most important service attributes
and classification criteria. Based on multiple criteria, we
designed a hierarchical information architecture to accomplish
encapsulation of sub-systems and define the communication
flows.

A. Lessons Learned

After the experience to put the service interactions and
interfaces into practice there are some lessons learned to share.

The first aspect is the complexity of API development
and the importance of documentation. After using a couple
different very complex APIs with many data types, it is
possible to say that documentation is key for every user. It
took several days to understand the thoughts that went into
data structuring with the Here and Google Calendar APIL.

Another experience was made in the field of data exchange.
By integrating the car into the Internet of Things it has become
a sensor node for future web services. One important factor
that came to mind was who is the owner and who may use the
data a car produces. For the car owner another aspect might
be privacy, as the data might be connected to the driver and
consumers might get a deep insight in the drivers life.

B. Future Work

With the introduction of a hierarchical information archi-
tecture for services based on multiple classification criteria we
introduced one way of handling the arrangement of services
in future vehicles. The next step is to refine this architecture
based on experience in practice. Therefore, a prototype will
be developed.
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