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Abstract—In-vehicle communication technologies are evolving.
While today’s cars are equipped with fieldbusses to interconnect
the various electronic control units, next generation vehicles have
timing and bandwidth requirements that exceed the capacities. In
particular Advanced Driver Assistance Systems (ADAS) and au-
tomated driving using high bandwidth sensors such as cameras,
LIDAR or radar will challenge the in-car network. Automotive
Ethernet is the most promising candidate to solve the upcoming
challenges. But to design and evaluate new protocols, concepts,
and architectures suitable analysis tools are required. Especially
in the interim period with architectures using automotive Ether-
net and legacy fieldbusses together, careful planning and design is
of vital importance. Simulation can provide a good understanding
of the expectable network metrics in an early development phase.

This paper contributes a workflow as well as the required
toolchain to evaluate new real-time Ethernet communication
architectures using event based simulation in OMNeT++. We
introduce a domain specific language (DSL) – the Abstract
Network Description Language (ANDL) – to describe and
configure the simulation and present the required simulation
models for real-time Ethernet and fieldbus technologies such
as CAN and FlexRay. We further introduce new analysis tools
for special in-vehicle network use-cases and the interaction of
the simulation with third-party applications established in the
automotive domain.

Index Terms—Simulation, In-Vehicle Networking, Real-time
Ethernet, Automotive Ethernet, CAN, FlexRay, Gateway

I. INTRODUCTION & PROBLEM STATEMENT

The in-vehicle network faces a significant paradigm change.
While communication architectures of today’s vehicles are
consisting of different technologies such as Controller Area
Network (CAN), FlexRay, Local Interconnect Network (LIN)
and Media Oriented Systems Transport (MOST), soon Eth-
ernet will form the backbone for in-vehicle communication.
Switched Ethernet is – due to its high data rate, its low
cost of commodity components, and its large flexibility in
terms of protocols and topologies – a promising candidate
to overcome the challenges of future in-car networking [1].
But, a sudden change from today’s architectures towards a
network solely build on Ethernet is impossible with reasonable
cost and risk. A consolidation strategy with heterogeneous
networks formed of an Ethernet root and legacy busses at
the edges will allow to preserve invest in knowledge around
legacy technologies. Such a mixed architecture can form the
beginning of a stepwise transition from today’s bus based
designs towards a flat network topology using Ethernet links
only.

To design and evaluate such future in-vehicle networks,
new tools are required. While current toolchains focus on
bit-correct simulation of fieldbus communication, future en-
vironments have to enable the developer to analyze effects of
congestion and jitter on the cars applications and assistance
functions on a system level. The OMNeT++ [2] platform
is a well suited tool and a perfect base to implement a
flexible workflow. Besides its open-source simulation core, it
allows to extend its Eclipse based IDE with custom plugins
for specialized design and analysis tasks. With this work we
contribute both, a uniform workflow as well as the required
models and tools to design and evaluate future in-vehicle
networks.

The center of the simulation toolchain are the simulation
models that are published open-source. For various real-
time Ethernet technologies the CoRE4INET model suite was
created. It relies on the OMNeT++ INET framework and
provides the implementation of real-time Ethernet protocols
as well as clock synchronization. The models for fieldbus
technologies are similarly provided in the FiCo4OMNeT suite.
To interconnect both technologies – real-time Ethernet and
fieldbusses – the SignalsAndGateways models were developed.

Experiences with the simulation during research on in-car
network architectures showed that the configuration of these
large networks is complex and lengthy. Thus there was a
demand to simplify the description of in-car network scenarios.
This demand led to the development of a domain specific
language (DSL) that supports the fast setup of simulations
of in-car network architectures.

Finally, in-car networks require the analysis of specific
network metrics, for example tracing of jitter in the forwarding
chain of cyclic messages. To support the evaluation of in-car
networks we created analysis tools and interfaces that support
the workflow and allow to pass simulation results to third-
party software. While some of these tools are specific to in-car
networking, most of the software provided for result analysis
is applicable to other network simulation scenarios as well.

The remaining paper is organized as follows: In Section II,
we introduce the technological background and relate to pre-
liminary and related work. Section III presents the simulation
models for in-vehicle networks. We present tools for designing
and configuring in-vehicle networks in section IV and tools to
analyze the simulation results in section V. Using a short case
study, section VI presents our workflow. Finally, section VII
concludes our work and gives an outlook on future research.
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II. BACKGROUND & RELATED WORK

Today there are several commercial tools to analyze in-
car networks. In industry, most popular is CANoe (by Vector
Informatik GmbH) that enables real-time cluster simulations
of fieldbusses. Today, CANoe does not provide functionality to
simulate real-time Ethernet variants. SymTA/S is a commercial
timing analyzer (not a network simulator) by Symtavision
GmbH that supports Ethernet (standard and AVB) as well as
common fieldbus technologies. It provides analytical models
to calculate load and timing.

OMNeT++ [2] is a discrete event based simulation platform
mainly focusing on the simulation of networks and multi-
processor systems. It is a perfect base for a simulation tool
chain for automotive communication. We developed our model
suites as an extension of the popular INET-Framework [3]
that provides the implementation of Ethernets physical layer
as well as protocols and applications above layer 2.

While there were no publicly available OMNeT++ sim-
ulation models for real-time Ethernet technologies, there is
another CAN bus model developed independently at the same
time at the Nagoya University in Japan. The last release is
from April 2014 and is not yet compatible with the latest
INET and OMNeT++ releases. The developers also analyzed
CAN-Ethernet gateway strategies [4].

For collecting simulation results in databases there are
already examples for MySQL provided with OMNeT++. A
simple interface for storing results in SQLite is provided with
the INET-HNRL, a fork of the INET framework for hybrid
networking research [5].

III. SIMULATION MODELS

The simulation models introduced in this section were
developed for in-car network simulations, but can be used for
other systems as well. All models are published open-source
(see http://sim.core-rg.de) and can be used free of charge.
Figure 1 gives an overview of the contributed simulation
models and their place in the software stack of the toolchain.
To simplify the installation an OMNeT++ plugin is provided
that offers an automated installation process as well as an
update procedure.

OMNeT++
IDE and Simulation kernel

SignalsAndGateways
Signal sources,

Gateways
CoRE4INET

Real-time Ethernet FiCo4OMNeT
Fieldbusses (CAN, FlexRay)

INET Framework
Internet Technologies / Protocols

Abstract Network Description Language (ANDL)

Vehicle network model

oppResultManagers
Recording of results, Constraint checks

provided contribution optional

Fig. 1. Overview of the contributed tools and simulation models

A. CoRE4INET

CoRE4INET (Communication over Real-time Ethernet for
INET) is a suite of real-time Ethernet simulation models.
Currently it supports the AS6802 protocol suite, traffic shapers
of Ethernet AVB, and implementations of IEEE 802.1Q, as
well as models to map IP traffic to real-time traffic classes.

The center of the CoRE4INET models is the implementation
of media access strategies for different traffic classes. By
flexibly combining these strategies, new traffic shapers can be
designed that are able to forward real-time traffic of different
standards. For example it is possible to combine time-triggered
traffic of AS6802 with credit based shaping of Ethernet AVB
to form a new time-aware shaper that can handle both classes
in parallel [6]. This allows to evaluate new concepts that are
currently under standardization or are even not yet assessed.

For incoming traffic, the models contain traffic selection
and constraint checks. To simulate time-triggered behavior and
time-synchronization, CoRE4INET provides models for oscil-
lators, timers and schedulers. Oscillators allow to implement
the behavior of inaccurate clocks with their unique influence
on real-time communication. Finally, CoRE4INET contains
application models for simple traffic patterns and traffic bursts.

The simulation models were checked against analytical
models of the different specifications and – where possible
– evaluated in empirical tests using real-world hardware.

CoRE4INET is under active development. New features are
constantly added. The next milestone targeting for release soon
is the support of frame-preemption as currently discussed in
IEEE PAR 802.1Qbu [7].

B. FiCo4OMNeT

FiCo4OMNeT (Fieldbus Communication for OMNeT++) is
a set of fieldbus simulation models. It was originally developed
with separate CAN and FlexRay models, but later merged to
take account for the similarities of fieldbus technologies.

Similar to CoRE4INET, FiCo4OMNeT contains models of
oscillators and clocks to allow for a precise simulation of
the synchronization of FlexRay’s static segment. Further it
contains application models for CAN and FlexRay applica-
tions with simple traffic patterns. The fieldbus models in
FiCo4OMNeT were originally checked against results of the
CANoe simulation environment, an industry standard software
for the simulation of fieldbus based in-vehicle networks.

Even though fieldbusses are considered legacy technology
there are new approaches. With CAN-FD (CAN with flex-
ible data rate) the bandwidth of CAN can be significantly
increased. We are currently working on a CAN-FD imple-
mentation to enable the simulation of advanced in-car network
architectures containing CAN busses with flexible datarate.

C. SignalsAndGateways

The SignalsAndGateways simulation models fill the gap
between the simulation of real-time Ethernet and fieldbusses.
Gateways are nodes that translate between legacy bus tech-
nologies and (real-time) Ethernet. To be as flexible as possible,
the gateways are divided in three submodules:
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a) Routing: The router module receives messages in their
original representation and decides based on forwarding rules
which path the message will take. A message can have no
routing entry if it should be dropped, one routing entry if it
has one receiving bus or node, or several routing entries if it
should be visible to several receivers on different busses. There
is no limit of busses and links a gateway can be connected to.
The gateway can also translate between fieldbus technologies,
thus it is also applicable to legacy designs with multiple busses
interconnected over a central gateway.

b) Buffering: Gateways support aggregation strategies
to improve bandwidth utilization of different technologies.
CAN messages for example have a maximum payload of
8B, while Ethernet messages have a minimum payload of
46B. If only one CAN message would be encapsulated in
an Ethernet frame, the rest of the frames payload would be
padded and bandwidth would be wasted. Aggregation strate-
gies implemented in the buffer modules allow to release frames
in groups, according to different strategies. These strategies are
implemented in the buffer modules, too.

Aggregation strategies have a huge impact on the latency
of messages passing a gateway. All strategies delay frames to
collect multiple messages before aggregating them into one
large packet. The most popular strategy implemented in the
buffer is the pooling strategy with holdup time. Each message
is assigned to a pool, while multiple different messages share
the same pool. Further each message is assigned a holdup time,
representing the maximum acceptable delay for this message.
On arrival of a frame in the pool, its holdup time is compared
with the pools holdup time. If the frames holdup time is
shorter, the pools time is adjusted correspondingly. When the
holdup time of the pool is expired all messages in the pool
are released together. The modular architecture of the gateway
allows to easily add more aggregation strategies.

c) Transformation: Transformation modules implement
the translation between different communication technologies.
The strategies transparently map information between field-
busses and Ethernet. Currently there is a simple mapping
between fieldbus frames and raw (layer 2) Ethernet frames.
The modular architecture of the gateway allows to easily
add more sophisticated mappings, e.g. when higher layer
application protocols should be used.

Similar to real-world gateways, gateway nodes can host
applications that are not related to gateway functionality.
Thus gateways can be added to control units that also host
application software.

IV. NETWORK DESIGN

Configuring the simulation of large heterogeneous networks
is complex and lengthy. To reduce this effort and to let the
developer focus on his design task, we developed a domain
specific language (DSL) for the description of heterogeneous
in-vehicle network designs. It is called Abstract Network
Description Language (ANDL) and provides an easy and
assisted way to design a network in an Eclipse environment. It

is implemented as an Eclipse plugin and thus fits into the OM-
NeT++ IDE. The plugin provides syntax highlighting as well
as context aware code completion. For TDMA technologies,
the ANDL plugin contains scheduling algorithms that allow
to find a first feasible schedule for initial results [8].

Listing 1 shows an example of a network consisting of
two CAN busses interconnected over a real-time Ethernet
backbone described in the ANDL.

Listing 1
ANDL CODE EXAMPLE WITH COMMENTS

t y p e s s t d { / / Types can be d e f i n e d and r e u s e d
e therne tL ink ETH { / / D e f i n i t i o n f o r E t h e r n e t l i n k

bandwidth 100Mb/ s ; / / L ink has bandwid th o f 100 MBit / s
}

} / / i t i s a l s o p o s s i b l e t o d e f i n e t y p e s i n a s e p a r a t e f i l e

network smal lNe twork{ / / ne twork name i s s m a l l N e t w o r k
i n l i n e i n i { / / I n l i n e i n i f o r s p e c i a l p a r a m e t e r s

r e c o r d−e v e n t l o g = f a l s e
} / / Parame ter s are i n s e r t e d i n t o . i n i

d e v i c e s{ / / D e f i n e a l l d e v i c e s i n t h e ne twork
canLink bus1 ; / / F i r s t CAN bus
canLink bus2 ; / / Second CAN bus
node node1 ; / / F i r s t CAN node
node node2 ; / / Second CAN node
gateway gw1 ; / / Gateway f o r f i r s t CAN bus
gateway gw2 ; / / Gateway f o r second CAN bus
s w i t c h s w i t c h 1 ; / / Real−t i m e E t h e r n e t S w i t c h

}

c o n n e c t i o n s{ / / P h y s i c a l c o n n e c t i o n s ( Segments = groups )
segment backbone { / / E t h e r n e t Backbone p a r t

gw1 <−−> {new s t d . ETH} <−−> s w i t c h 1 ; / / E t h e r n e t L ink
gw2 <−−> {new s t d . ETH} <−−> s w i t c h 1 ; / / E t h e r n e t L ink

}
segment canbus{ / / CAN bus p a r t ( b u s s e s s h a r e c o n f i g )

node1 <−−> bus1 ; / / CAN node c o n n e c t e d t o f i r s t bus
gw1 <−−> bus1 ; / / Gateway c o n n e c t e d t o f i r s t bus
node2 <−−> bus2 ; / / CAN node c o n n e c t e d t o second bus
gw2 <−−> bus2 ; / / Gateway c o n n e c t e d t o second bus

}
}

communication{ / / Communicat ion i n t h e ne twork
message msg1{ / / Message d e f i n i t i o n

sender node1 ; / / F i r s t CAN node i s s e n d e r
r e c e i v e r s node2 ; / / Second CAN node i s r e c e i v e r
payload 6B ; / / Message pay load i s 6 B y t e s
per iod 5ms ; / / 5ms c y c l i c t r a n s m i s s i o n
mapping{ / / mapping t o t r a f f i c c l a s s , id , gw s t r a t e g y

canbus : can{ id 3 7 ;} ; / / Message ID 37 on CAN
backbone : t t {ctID 1 0 2 ;} ; / / TT t r a f f i c on backbone
gw1 : pool gw1 1{holdUp 10ms ;} ; / / A g g r e g a t i o n t i m e

}
}

}
}

In comparison to the compact description in ANDL, the
size of the generated OMNeT++ config (.ini/.ned/.xml) has
more than 250 lines. The resulting network is shown in Figure
2. The definition of the scenario starts with the networks
devices. Afterwards the previously defined devices are ar-
ranged into a network topology in the connections section.
The topology can be divided in several different segments with
different configurations for messages. In the example there is
one segment for the Ethernet part called backbone and one
segment for the CAN bus part called canbus. When messages
traverse the borders of a segment they are translated from the
sending segments representation into the receiving segments
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Fig. 2. ANDL generated network consisting of two CAN busses and a
real-time Ethernet backbone with two gateways and one switch

representation. The last part of the definition is the actual
communication taking place. In the example there is only one
message transmitted from node1 to node2. The mapping of
each message defines how the message is represented in the
different segments. In the example the message is a CAN
frame with id 37 on the bus and a time-triggered message
with critical traffic id 102 on the real-time Ethernet backbone.

Besides the features shown, the ANDL defines more pa-
rameters to describe traffic flows or aggregation strategies.
Commonly used components can be defined in include files,
e.g. a Ethernet Link with 100Mbit/s, and used in several
places. Further ANDL provides inheritance, thus it is possible
to define primitive stencils for components that are later refined
during the instantiation.

Currently, ANDL supports only the most commonly used
parameters. For more sophisticated configurations inline ini
code can be used. Parameters defined in the inline ini sections
are directly copied into the resulting omnetpp.ini file.

The ANDL is implemented as an OMNeT++ plugin us-
ing Eclipse’s Xtext technology. Xtext is a framework for
development of programming languages and domain-specific
languages. It provides a grammar to define the language and
generates the required parsers as well as the code editor for
the OMNeT++ IDE.

V. RESULT ANALYSIS

The OMNeT++ IDE already comes with tools for the
result analysis. We extended those built-in tools to simplify
the analysis in specialized use-cases and developed interfaces
to interconnect the OMNeT++ simulation with established
industry products. Our contributions for the result analysis are:

A. Gantt Chart Timing Analyzer
The Gantt Chart Timing Analyzer (GCTA) is an OMNeT++

plugin developed to trace jitter and delay in cyclic commu-
nication. It uses a timing log file (.tlog) written during the
simulation to generate a gantt chart of the communication path
from sender to receiver. In contrast to the OMNeT++ eventlog,
that shows all events of the simulation in a timeline, the GCTA
plugin compresses all occurrences of a cyclic message into one
single chart. This allows to easily detect the source of jitter
and delay in the path between sender and receiver.

After installing the GCTA plugin in the OMNeT++ IDE,
.tlog files (see section V-B3) recorded during the simulation
can be processed. Currently, GCTA only supports analysis of
(real-time) Ethernet traffic, but the concept is also applica-
ble to heterogeneous networks with Ethernet and fieldbusses
interconnected using gateways. GCTA is an example for a
specialized analysis tool implemented as OMNeT++ plugin
that extends the built in functionality. As it relies on the
visualization capabilities of OMNeT++ no further software is
required.
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Cluster

Simulation 
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Simulation 
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…

start simulation
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Fig. 3. Storing and accessing simulation results using a database (e.g.
postgreSQL).

B. oppResultManagers

oppResultManagers is a set of modules for OMNeT++
simulations. Instead of simulation models it contains so called
ResultManagers. ResultManagers are responsible for writing
out simulation results. The OMNeT++ vector and scalar files,
as well as the eventlog are built-in instances of ResultMan-
agers. The oppResultManagers project adds the following
ResultManagers to OMNeT++:

1) PCAPng: The PCAP next generation (PCAPng) dump
file format [9] is an attempt to overcome the limitations
of the currently widely used (but limited) libpcap format.
Libpcap allows to log packet oriented communication and is
used in popular analysis tools such as Wireshark. The most
important extension of PCAPng is the support of multiple
interfaces in one file. The INET framework already contains
a module to write legacy PCAP files, but it only supports
communication above IP layer. Due to the PCAPng module
being a ResultManager, no changes to the simulation must
be made to write PCAPng files, it is simply enabled in the
ini-confiuration in OMNeT++:
event logmanager−class = ” PCAPNGEventlogManager ”

The PCAPng manager uses the packet serialization feature
of the INET framework. Thus it is able to write packets for
all protocols and layers as long as a serializer was previously
implemented and registered. This makes it applicable in other
domains, e.g. wireless communication, or for verifying the
implementation of models of protocols in OMNeT++.

2) SQLite & postgreSQL: The SQLite and postgreSQL
ResultManagers allow to store simulation results into a SQLite
database file or a postgreSQL database. Databases allow to
perform complex queries on the simulation results. This can
significantly speedup the process of obtaining network metrics,
especially when huge parameter sets with various seeds were
simulated.

SQLite is a file based database that is fast and efficient.
The SQLite ResultManager is in most cases slightly slower
than OMNeT++ vector and scalar managers, but produces
smaller result files. The SQLite database is always stored
on the machine executing the simulation. As the database is
locked when it is opened for writing (similar to a OMNeT++
result file) several simulation processes running concurrently
cannot write to the same database. Thus different parameter
sets or seeds simulated in parallel will have to use separate
SQLite databases. A script provided with the result manager
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offers to merge several databases to enable queries containing
results of several runs. As SQLite databases are regular files
on the filesystem they can be easily transferred, archived, or
read and manipulated using third party software.

The postgreSQL manager allows to write simulation results
on a central database server in the network, while simulations
are executed on a distributed cluster of nodes (see Figure 3).
Several users can access the results concurrently without the
necessity to distribute the result files. This allows to transfer
the load of the simulation as well as result analysis from the
users workstations towards strong servers and large centralized
storage systems. The drawback of this solution is a slight
performance decrease due to the overhead of sending results
over the network as well as delays due to the databases lock
mechanisms when it is accessed concurrently. Using a database
system, OMNeT++ simulations can be easily attached to a
wide range of analysis tools, e.g. R using a database driver.

The database ResultManagers are enabled in the .ini con-
figuration of the simmulation:
outputsca larmanager−c lass =” cPos tg r eSQLOutpu tSca l a rManage r ”
outputvectormanager−c lass =” cPos tg reSQLOutpu tVec to rManager ”
postgresqloutputmanager−connect ion =” dbname= t e s t d b u s e r =

t e s t u s e r password = t e s t u s e r p o r t =15432 ”

3) GCTA: Writes out the previously introduced .tlog files
for the GCTA plugin (see section V-A). The .tlog files contain
information about the simulated topology as well as timing of
cyclic messages. Traffic flows are aggregated based on their
traffic classes. For example for messages using AS6802 the
messages are grouped using the virtual link id, correspondingly
for Ethernet AVB the stream id is used.

4) Constraint Check: The ResultManager for constraint
checks allows to define rules for output vectors. The defined
bounds are not to be violated by the simulation. The Result-
Manager writes out a report of possible violations and can
also end the simulation if a violation was detected. This way
a parameter set with undesired results won’t unnecessarily
utilize CPU resources. For example, if a large number of
simulations with different parameters and seeds is being batch
executed, a run that does not comply with the requirements
is immediately stopped when the violation occurs. This can
significantly reduce the time required to simulate large sets of
parameters.

Currently constraints include minimum and maximum
checks, minimum and maximum checks using an average over
a number of samples, over a time interval and checks using the
sum of a vector. Constraints are configured in a XML format
(see listing 2) and can be easily extended.

Listing 2
EXAMPLE OF XML DEFINITION FOR THE CONSTRAINT CHECK

RESULTMANAGER

<c o n s t r a i n t s>
<c o n s t r a i n t module=” Network . node1 ”

name=” rxMessageAge : v e c t o r ”>
<min>1 . 5</ min>
<max>1 . 7</ max>

</ c o n s t r a i n t>
<c o n s t r a i n t module=” ( . * ) \ . node2 ”

moduleIsRegex=” t r u e ”
name=” ( rx | t x ) MessageAge : v e c t o r ”
nameIsRegex=” t r u e ”>
<avg min samples=” 10 ”>1 . 5</ avg min>
<avg max samples=” 10 ”>1 . 7</ avg max>

</ c o n s t r a i n t>
</ c o n s t r a i n t s>

5) Multiple: This ResultManager allows to use several
managers in parallel, enabling the user to write e.g. the legacy
vector files in parallel with one of the new formats previously
presented.

VI. CASE STUDY

The simulation environment is a valuable and established
part of our daily research and development.

A. Simulation Workflow

Our workflow (see figure 4) starts with the network design.
The ANDL is used to describe the required nodes, as well as
the desired network topology, and the mapping of messages to
different traffic classes. Afterwards our toolchain automatically
generates an executable simulation configuration that is run
using the simulation models for real-time Ethernet and field-
busses. After the simulation run, the results are analyzed with
the various result analyzers that are built into the OMNeT++
IDE, provided as additional plugins (e.g. the GCTA), or
interconnected using databases and specialized output formats
such as PCAPng.

B. Simulating the Ethernet Backbone of a Prototype Car

The presented simulation environment is used in several
of our publications and is a base for the evaluation of new
architecture concepts for in-car networks. So far, our largest
project is the simulation of network designs for a real-world
prototype car [10].

The simulated prototype is a Volkswagen Golf 7 that was
equipped with a real-time Ethernet backbone for the RECBAR
research project. The car originally contains seven domain
specific CAN busses interconnected over a central gateway
node. For the prototype a real-time Ethernet backbone using
three real-time switches and several additional nodes with high

generation configuration simulation
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Fig. 4. Workflow of simulation projects – From network description to result analysis
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Fig. 5. Simulation of the Architecture of the RECBAR prototype

bandwidth applications such as high definition cameras and
laser scanners were added. We simulate the prototype with real
traffic patterns of the series car. Figure 5 shows the network.

In the simulation we are able to compare the results of
the legacy network containg a central gateway node, with
the results from the real-time Ethernet backbone. The results
show that the real-time Ethernet solution can provide compa-
rable end-to-end latency and jitter, while providing significant
bandwidth reserves. The simulation allows us to evaluate the
influences of different gateway aggregation strategies (see
section III-C) and additional best-effort background cross-
traffic.

Compared to empirical measurements in the real-world
prototype, the simulation allows faster assessment of a wide
range of protocols and configuration parameters. Further, the
transparent nature of the network simulation allows us to
debug configuration errors much faster than using the real
system. While real hard- and software requires us to apply
probes and adopt code to trace errors and measure timing, the
simulation already provides thousands of measuring points.

VII. CONCLUSION & OUTLOOK

In-vehicle communication technologies are about to change
from todays fieldbusses to switched real-time networks. With
network simulation on system-level the process of evaluating
real-time and application protocols, developing new shaping
strategies, assessing architectures, and predicting hardware
requirements can be supported. We contribute a simulation
environment consisting of simulation models as well as de-
velopment and analysis tools to face the challenges in this
upcoming technology transition. Our experiences with the
simulation of in-car networks for prototypes and complex
heterogeneous network architectures for future cars underlines

the value of a uniform system-level simulation environment.
Our experiences with the development of OMNeT++ plu-

gins and ResultManagers specialized for tasks in our domain
of in-car network research show that for the daily work
in development and research projects it is worth analyzing
whether specialized tools can support the simulation workflow.
With its Eclipse based IDE, OMNeT++ is a solid foundation
for the development of such tools.

In our future work we focus on adding new technologies to
our simulation suite, such as Ethernet with frame preemption
as currently discussed in IEEE 802.1Qbu or the implementa-
tion of CAN with flexible data rate (CAN FD). We further
work on refining our result analysis tools.

DOWNLOAD

All simulation models as well as the analysis tools presented
in this work are published open-source and can be downloaded
from our website at:

http://sim.core-rg.de
We further provide an Eclipse update site to simplify the

installation of the presented OMNeT++ plugins.
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