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Kurzzusammenfassung
Die zunehmende Komplexität automobiler Netzwerke und deren hohe Bandbreitenanforderun-
gen erfordert neue Konzepte in der Vernetzung der elektronischen Komponenten im Fahrzeug.
Real-time Ethernet ist ein geeigneter Kandidat diese Problemstellung zu lösen. Um frühzeitig
im Entwicklungsprozess Steuergeräte zu testen hat sich die Restbussimulation als adäquates
Mittel etabliert und wird im Projekt am Beispiel des TTEthernet-Protokolls für Real-time Ether-
net erarbeitet. In dieser Arbeit werden prinzipielle Hardwareaufbauten und Topologien für eine
Real-time Ethernet Restbussimulation erläutert. Des weiteren wird ein formales Modell auf Ba-
sis der Mengentheorie vorgestellt, dass die Berechnung passender Topologien in Abhängigkeit
ausgewählter Testlinge ermöglicht.

Title of the paper
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Abstract
The increasing complexity of automotive networks and their high bandwidth requirements will
demand new concepts in networking of electronic automotive components. Real-time Ether-
net is a suitable candidate to solve this problem. In order to allow testing of control units in
an early point in the development process, cluster simulation has been established as an ad-
equate manner and therefore in this project it is developed for Real-time Ethernet using the
example of TTEthernet. In this work, hardware and topology setup approaches for a Real-time
Ethernet based cluster simulation are explained. Furthermore, a formal model basing on set
theory is presented, that allows for calculating suitable topologies in dependency of selected
devices under test.
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1 Introduction

Today’s cars are complex, mixed critical [1], distributed systems with more than 70 single com-
ponents, called electronic control units (ECUs) [2]. These units are responsible for either infor-
mation and entertainment systems e.g. radio navigation or safety relevant functions such as
x-by-wire or adaptive cruise control systems. Thus, the requirements for these systems differ in
bandwidth, reliable data transmission and real-time behavior. Safety critical functions have high
demands in real-time characteristics, whereas entertainment systems require high bandwidth
capabilities. Due to these different requirements, the in-car network infrastructure became het-
erogeneous in the past. For each kind of application class a dedicated system for on-board
networks has been utilized. As a consequence, the required on-board network topology be-
came more and more complex and nowadays, it is hardly manageable [3]. Also next-generation
driver assistance functions like camera or radar based systems will tighten the problematic of
future in-car networks. These applications both have high real-time requirements and high de-
mands in bandwidth. State-of-the-art network systems like CAN [4] and FlexRay already [5]
operate on their bandwidth limits or do not meet the real-time requirements (MOST [6]), which
makes them unsuitable in the field of these new assistant systems. A possible solution for the
addressed problems is the application of Ethernet-based networks in vehicles [7, 8, 9]. Real-
time Ethernet (RTEthernet) is a suitable candidate for future on-board networks to overcome
the issues imposed by next-generation driver assistance. It provides reliable real-time data
transmission while supply high bandwidth as well. Additionally, the complexity of the network
infrastructure can also be reduced, due to the ability of dedicated message transmission in
different classes, which would result in one ‘flat’ network system only.

Further on, the utilization of software controlled automotive applications is rising rapidly, too. It
is the key driver for new innovations in the automotive industry and its utilization has increased
in a few years from 20 percent to 80 percent. Forecasts claim that 90 percent of the automo-
tive functions will be realized in software in this decade [10]. This fact has a direct influence
on the costs during the development process of a new automobile. To minimize these costs,
the software has to be tested in an early development stage. The functionality spread over
several units makes this goal even more difficult, since the development of new cars is also
more and more distributed [11]. The Original-Equipment-Manufacturer (OEM) designs the car
and its features in specifications, while external suppliers produce only parts. Therefore, the
suppliers have to test their developed ECUs entirely on their own, prior to the first assembly of
all components during the system integration. Currently missing nodes that are responsible for
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an essential part of the application can make this testing complex. For this purpose, a testing
method called cluster simulation has to be applied by the suppliers. A cluster simulator imitates
the missing nodes and their behavior inside the network and therefore enables a solution for
unit-testing purposes. Cluster simulation has already proven to be utilized inside the develop-
ment processes for state-of-the-art technologies, since many commercial products have been
developed [12].

The to be tested devices are connected to the cluster simulator via the real network interface,
in order to get triggered with regular messages. Since switched networks, like RTEthernet,
provide a separate collision domain for each participant, the network topology differs to the
state-of-the-art technologies, which are basing on a bus structure. Therefor, the hardware
setup and the corresponding topology for RTEthernet based cluster simulation is also different
compared to bus based network systems. In contrast to a bus based cluster simulation, the
number of parallel connected DUTs has a significant influence on the RTEthernet simulation
setup as well. Since the setup effects also the cost for the cluster simulation, it should be
possible to calculate the required attributes of a cluster simulator in dependency of the number
of DUTs in order to find the best trade-off between cost and performance.

In this paper, topology alternatives for RTEthernet based cluster simulation are presented and
discussed. Furthermore, the influence of the number of connected DUTs is investigated. A
formal model, basing on set theory, allows calculation, whether a topology alternative in de-
pendency of the number of DUTs can be utilized to perform a cluster simulation properly and
to find the best trade off.

The remainder of this paper is organized as followed: Section 2 on the following page presents
related work on cluster simulation hardware setups for the TTP/C protocol and introduces se-
tups and corresponding topologies for RTEthernet based cluster simulation. In Section 3 on
page 18 a formal model to calculate required attributes of a RTEthernet based cluster simula-
tion is outlined and results of an example network are presented in 4 on page 32. Section 5 on
page 38 concludes and gives an outlook on upcoming work.



2 Hardware Setups of Real-Time Ethernet
based Cluster Simulation

Cluster simulation is a suitable method to test electronic control (ECU) units in an early phase
during the development process. Former solutions mostly confirm to real-time aware bus sys-
tems like CAN or FlexRay, basing on a shared media access scheme that only allows transfer-
ring one message at the same time. Switched networks however, provide a separate collision
domain for each network participant, which allows parallel transmission of messages. Due to
different media access approaches, bus and switched networks utilize different network topolo-
gies. Since cluster simulation uses the real network to trigger and stimulate the devices under
test (DUTs), it might be that the simulation topology for switched networks has to be adopted
to test the devices properly and cost efficient. This section will present hardware setups of a
former used bus based cluster simulation and afterwards, setups for RTEthernet based cluster
simulation. Finally, their characteristics will be compared to each other and a short conclusion
outlines irrelevant topologies.

2.1 Related Work: Former Utilized Setups for Time-Triggered
Bus Systems

In general, the hardware setup for bus based systems is limited, due to the shared media ac-
cess, which means the network setup for cluster simulation and the real network is identical. A
topology for bus based cluster simulation consists of DUTs and a simulation platform intercon-
nected via the bus medium. However, there can be differences in the system architecture of the
cluster simulator. In his dissertation [13], Thomas M. Galla has presented four different hard-
ware setup approaches for TTP/C cluster simulation. TTP/C is a time-triggered bus system in
the context of the Time-Triggered Architecture [14] utilized to interconnect components in order
to form a highly dependable real-time system [15]. A TTP/C node is composed of a host mi-
crocontroller, that runs the actual application, and a communication controller, that establishes
the connection to the network by running the protocol stack. Both controllers communicate via
the ‘Communication Network Interface’ (CNI) which can be implemented as dual port memory.
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Since the developed cluster simulator had to be conformally implemented to the general sys-
tem architecture of TTP/C nodes, its system architecture is divided into two subsystems (host
and communication system), too.

The cluster simulator host subsystem is composed of either one or multiple micro controllers,
that are responsible for the simulation of nodes. The communication sub-system, again com-
posed of one or multiple controllers, to allow protocol compliant communication. Four different
hardware setups are depicted in Figure 2.1 and are discussed afterwards.

Cluster Simulator
DuT 1

DuT n

DuT 2

Communication Controller

Host Controller Communication Network Interface

(a) Single communication controller and a
single host

Cluster Simulator
DuT 1

DuT n

DuT 2

Communication Controller

Host Controller Communication Network Interface

(b) Multiple communication controllers
and a single host

Cluster Simulator
DuT 1

DuT n

DuT 2

Communication Controller

Host Controller Communication Network Interface

(c) Single communication controller and
multiple hosts

Cluster Simulator
DuT 1

DuT n

DuT 2

Communication Controller

Host Controller Communication Network Interface

(d) Multiple communication controllers
and multiple hosts

Figure 2.1: Bus based cluster simulation hardware setups in comparison

Approach 1 This approach consists of one communication controller and one host controller
to perform the cluster simulation and is depicted in Figure 2.1a. It is the most simple and
cost efficient opportunity to achieve cluster simulation for time-triggered bus systems.
All simulated nodes are executed on one host controller. Therefor, a coordination is
unnecessary to prevent the CNI from concurrent access. However, this hardware setup
can produce two conflict scenarios which may have to be resolved:
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1. The mapping of several tasks, executed on real nodes to one physical processor.
If the overall CPU simulation utilization exceeds the CPU performance of the simu-
lation platform, simplifications to the simulation model of the simulated nodes have
to be applied.

2. Since the specification of TTP/C allows communication controllers to send only
one time during a time-division-multiple-access (TDMA) round, the communication
protocol for the cluster simulator has to be modified to be able to send in each
simulated slot.

Approach 2 This approach is depicted in Figure 2.1b on the preceding page and is composed
of one host controller and a dedicated communication controller for each simulated node.
Due to the fact that only one host controller is utilized, a coordination to prevent the
CNI from concurrent access is unnecessary, too. While solving the protocol conflict, the
mapping of several tasks on one physical processor must still be taken into account.

Approach 3 Figure 2.1c on the previous page depicts the approach with a single communi-
cation and a dedicated host controller for each simulated node. On the one hand, this
alternative provides sufficient CPU performance, which makes simplifications to the sim-
ulation model rather unnecessary. But on the other hand, additional effort has to be
taken into account to coordinate the access to the CNI from the host controllers to pre-
vent concurrent access. Still, the protocol has to be modified to be able to transmit in
each simulated TDMA slot, since only one communication controller is used.

Approach 4 An approach with multiple communication and host controllers is shown in Fig-
ure 2.1d on the preceding page. To be precise, this approach does not really conform to
a cluster simulation approach, since for each simulated node a dedicated communication
and host controller is used. Thus, this approach alternative solves all conflicts imposed
by alternative 1. It provides sufficient CPU performance and multiple communication
interfaces to make simplifications and modifications to the protocol unnecessary. From
the economic perspective, this approach has a major drawback in the amount of utilized
hardware.

Under the assumption that the component costs for host controllers were rather high, approach
1 and 2 fit best to perform an economically feasible cluster simulation for time-triggered bus
systems. Under simulation capability perspective, approaches 3 and 4 outperform the previ-
ous alternatives. Nevertheless, Thomas M. Galla used the single communication and single
host configuration (approach 1) to implement a hardware cost efficient cluster simulator for
time-triggered bus systems. The modification of the protocol was accepted for economic rea-
sons and the simulator was successfully used in the development process of a steer-by-wire
prototype system.
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In contrast to the four presented setup approaches for time-triggered bus systems, setups
for RTEthernet based cluster simulation differ in the connection between the DUTs and the
simulator platform. Nevertheless, concepts for the simulation platform composition can be
also used in RTEthernet. In general, the simulation of nodes has to be simplified as well, if the
computation performance is not sufficient enough. Also the principle of using more computation
units to get more simulation performance can be adopted. On the other hand, if the DUTs are
communicating with each other, a switch has to be simulated or must be physically available in
hardware.

2.2 Real-time Ethernet Based Hardware Setups

The last section has depicted hardware setups for time-triggered bus systems, which have a
shared collision domain among all participants. This section deals with hardware setups for
RTEthernet based network systems. RTEthernet networks are based on switched Ethernet,
where each network participant has its own collision domain, which allows parallel message
transmission. Due to the access scheme of RTEthernet, the hardware setup does not only
affect the cluster simulation platform composition, but also the used network topology. This
results in different possible setup configurations, that are discussed in detail in this section.
The discussion focus is set towards setup dependent attributes, performance and economic
characteristics. In general, setups can be classified in approaches with a direct connection
between the cluster simulator and the DUTs (refer Figure 2.2, described in Section 2.2.1 on the
next page and setups with additional physical RTEthernet switches, outlined in Section 2.2.2
on page 12. Both approaches allow increasing the simulation performance by using multicore
platforms, like symmetric multiprocessing (SMP) architectures. In both setup approaches it is
desirable to record the traffic inside the network to allow additional test analysis.

Cluster Simulator

DuT 1

DuT n
Cluster Simulator

DuT 1

DuT nDuT n

Test Facility Environment

Figure 2.2: Comparison of a direct cluster simulation and an approach with additional RTEth-
ernet switch



2 Hardware Setups of Real-Time Ethernet based Cluster Simulation 7

2.2.1 Directly Connected Devices Under Test

Hardware setups with a direct connection do not explicitly need further RTEthernet hardware
like switches and the network topology corresponds to a peer-to-peer approach. The DUTs are
directly coupled to the simulator platform which results in the following setup scenarios:

• One network interface card for one connected device under test

• Multiple network interface cards for multiple connected devices under test

• Distributed simulator for multiple connetected devices under test

The used hardware platform must be real-time capable, since messages in RTEthernet are
scheduled in a time-triggered (TT) or rate-constrained (RC) manner. TT-messages expect a
high timely precision, whereas RC-messages have to be transmitted according a configured
‘bandwidth allocation gap’ (BAG). Additionally, the cluster simulator has to completely support
the time synchronization mechanism of RTEthernet. Since no further hardware is required,
only the simulation platform has to be configured.

One NIC for One DUT

The first alternative is composed of a cluster simulator with one network interface card (NIC),
that is directly connected to the device under test and consists of a single or SMP CPU ar-
chitecture (Fig. 2.3a respectively Fig. 2.3b). In general, this is the simplest hardware setup
alternative to perform a RTEthernet cluster simulation, but it is limited to one single device
under test.

Cluster Simulator

DuT 1

CPU-Core

NIC
Buffer

(a) One network interface and one CPU
core

Cluster Simulator

DuT 1

CPU-Core

NIC
Buffer

(b) One network interface and multiple
CPU cores

Figure 2.3: Hardware setup for a direct connected device under test
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Since only one DUT is connected to the cluster simulator, the message scheduling can be
taken from the DUT’s configuration with little adaptation. As already presented in the setup
alternatives for bus systems (refer to Section 2.1 on page 3), the mapping of simulated nodes
on one or multiple cores has to be achieved, too. Again, the CPU utilization of a core must not
exceed the CPU performance. An adequate approach to simplify the simulation of nodes is to
execute only tasks that are responsible for the generation and reaction of messages, which are
consumed and produced by the DUT, instead of imitating the complete behavior of a simulated
node.

These tasks can be either implemented in a single-process, (only reasonable on a single core
system), or a multi-process environment. In a single-process, the simulation tasks are sched-
uled sequentially as functions, which excludes concurrent NIC buffer access. If the simulation
tasks are implemented as a multi-process system, the tasks can run independently and the
NIC access has to be synchronized in order to avoid concurrent access. Since the platform is
composed of only one network interface, the simulation tasks do not have to be assigned to
dedicated interfaces.

Furthermore, the transmission of event-based messages, like RC- and BE-messages, can be
delayed, since TT-messages have always precedence. They are queued in an according buffer
and are sent, regarding their scheduled transmission.

A suitable use-case for this alternative is the unit testing approach, where the logical behavior
of an ECU application can be tested regarding conformance, by analysing the received data.
Further, this alternative allows rapid prototyping of new applications if the final ECU hardware
is not yet completely specified or physically available in hardware. The application is executed
on the cluster simulation platform and can be investigated in another testing or prototype envi-
ronments.

Advantages Easy implementation of the cluster simulator itself, since the message scheduling
can be taken from the DUT with little effort. Also the simulation task scheduling is simple,
if the simulator is implemented for single process architecture. Under the assumption that
the cost for implementation is rather high, this approach is economic attractive. The CPU
performance for cluster simulation should be sufficient, since only one device is tested.
Thus, the risk of performance issues is quite small.

Disadvantages This approach is limited to one DUT. More on, the cluster simulator must be
real-time capable which results in higher hardware costs.

Multiple NICs for Multiple DUTs

The second alternative for cluster simulation is depicted in Figure 2.4 on the following page.
Again, the simulator is directly coupled with the to be tested devices. In contrast to the first
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alternative, the platform is composed of one network interface per DUT. This allows communi-
cation between the DUTs via a simulated software switch, if one DUT depends on data from
another DUT. With this alternative, it is possible to test multiple devices at the same time with-
out using further RTEthernet hardware in terms of additional switches, but the to be transmitted
messages have to be assigned to dedicated NICs, in order to trigger the correct DUT.

Cluster Simulator

DuT 1

NIC

DuT n

CPU-Core

Buffer

(a) Multiple network interfaces and one
CPU core

Cluster Simulator

DuT 1

NIC

DuT n

CPU-Core

Buffer

(b) Multiple network interfaces and multi-
ple CPU cores

Figure 2.4: Hardware setup for a direct connection with multiple NICs

Multiple DUTs are connected to the cluster simulator which results in a more complicate im-
plementation than the previous alternative, since the number of simulated messages are likely
higher in dependence of the amount of DUTs. The implementation becomes even more com-
plex, if a parallel transmission and reception of messages has to be applied. This boosts the
risk of performance issues significantly, if the simulator is build upon a single-process simula-
tion architecture.

If multiple DUTs expect the reception of independent TT-messages at the same point in time
in a single process, the according messages have to be sequentially calculated and must be
buffered in the NIC before their actual transmission start. The message release can then be
performed nearly in parallel by activating the start of transmission in all NICs. If independent
TT-messages are to be received at the same point in time, they have to be sequentially read
from the NICs. In a multi-process, multi-core simulator architecture (Fig. 2.4b), the messages
can be calculated in parallel, but access from processes to one NIC has to be synchronized in
order to avoid concurrent access.

This setup allows exchanging messages through the devices under test. Therefor, the shared
traffic has be passed on at the simulation platform from one interface to the other regarding
the simulated software switch. Since handing messages over at the cluster simulator induces
a larger and a non-deterministic delay than a typical RTEthernet switch, the timing behavior
of TT-messages can be negatively affected, because the message routing has to be done in
software. At worst, TT-messages miss their transmission slot and will be dropped at receiver
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side. As a solution, a special NIC with several separate ports can be used, that hands the
traffic over network card internal without using the hosts data bus.

On the other side, it is simply possible to analyze the traffic that is shared among the DUTs
without using further hardware which results in network sniffer capabilities by default. The
traffic can be collected at the simulated switch and passed to a further process, that stores the
traffic.

While the first presented alternative is used for unit testing, this setup can also be used during
the integration phase, where single devices are connected to build a system for the first time.

Advantages Under the assumption that the costs for RTEthernet switches are rather high,
this setup provides the capability to test multiple devices at once, without using further
expensive hardware. Therefor, only the cluster simulator itself have to be configured
regarding the selected devices under test.

Disadvantages Although further hardware costs for external devices can be saved, the imple-
mentation cost for the simulator rises significantly with the amount of DUTs and the to
be simulated messages. Also the actual hardware requirements are higher, because the
simulator itself must be real-time capable. The utilization of a special NIC with multiple
ports raises also the cost significantly.

Distributed Simulator for Multiple DUTs

As a third and last alternative, a distributed approach (Fig. 2.5 on the following page) for a direct
connected cluster simulation is possible. The cluster simulator is arranged on several separate
hardware platforms, each composed of one NIC per DUT. The distributed simulators are also
directly connected to each other, to allow exchanging messages between the subsystems un-
der test.

The distributed setup can be seen as a special case from the previously presented approaches
‘One NIC for One DUT’ on page 7 and ‘Multiple NICs for Multiple DUTs’ on page 8, but causes
further problems. Since the simulation is distributed in several parts, all cluster simulator sub-
systems have to be synchronized, in order to correctly schedule messages and to provide a
system wide consistent time base. Further, if a DUT depends on data from other DUTs, the
traffic may have to be traversed between the cluster simulator subsystems, which can induce
further non deterministic delays. As corresponding use case for this setup, the integration
phase can be seen.

Advantages In the case of only one connected DUT per cluster simulator subsystem, the
scheduling can be directly taken from the DUT’s scheduling table with little adaptation.
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C.S.

C.S.

DuT 1

NIC

DuT n

CPU-Core

Buffer

(a) Distributed approach with one CPU
core

C.S.

C.S.

DuT 1

NIC

DuT n

CPU-Core

Buffer

(b) Distributed approach with multiple
CPU cores

Figure 2.5: Hardware setup for a distributed appraoch with a direct connection
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Disadvantages From the economic perspective, the major disadvantage is rather obvious.
Since more than one cluster simulation platform has to be utilized, the hardware costs
are significantly higher. If more than one DUT is connected to the cluster simulator, the
implementation costs are expensive as well. Furthermore, the induced delays can be
greater, since the traffic may have to be handed over between several cluster simulation
subsystems.

2.2.2 Indirectly Connected Devices Under Test

A direct connection between the cluster simulator and the DUTs is not the only option, to
perform a cluster simulation. Due to the fact, that RTEthernet is based upon switched Ethernet,
a dedicated RTEthernet switch can be used to avoid the non deterministic traversal behavior
if multiple DUTs are connected. A utilization of such hardware, results in the following setup
alternatives:

• One network interface card for one or multiple devices under test

• Multiple network interface cards for multiple devices under test

• Distributed simulator for multiple devices under test

In this hardware setup classification, the utilization of one or more dedicated RTEthernet
switches is mandatory, since standard Ethernet switches are not capable of time-triggered
or rate-constrained message transmission, which results in additional costs for further RTEth-
erner capable hardware. The message routing and the proper scheduling has to be statically
configured to the switches.

These switches in general have a higher timing precision than software based RTEthernet
endsystems, because the protocol is implemented in hardware. Therefor, the cluster simulator
does not have to precisely send critical messages according their configured time slot, but at
least before their actual scheduled receiving point in time at the DUT. The cluster simulator
can use the timing precision of the switch to transmit the messages to the DUT. In order to
schedule TT-messages in time, the cluster simulation platform has to be synchronized to the
time of the system, too. Nevertheless, these timing requirements are less than a setup with a
direct connection to the DUTs, since the TT-messages can be buffered and precisely sent by
the switch and not by a software stack in the cluster simulator’s host. Therefor, TT-messages
are permitted to jitter for a certain interval while transmitted from the actual cluster simulator
platform. An in-time scheduling could be realized by receiving TT-messages with a configured
bigger receive-window at the switch. The RTEthernet switch is then responsible for the precise
time-triggered transmission of the message to the DUT.
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Since this setup allows testing of multiple DUTs, these devices can interact with each other
by sending messages, which makes a traffic analysis desirable. It is not as comfortable as in
the alternatives ‘Multiple NICs for Multiple DUTs’ on page 8, since the cluster simulator is not
located between the DUTs. Therefor, additional monitoring routes to the simulation platform
have to be configured to the switches. The next subsections will discuss the attributes in detail
for the presented setups.

One NIC for One or Multiple DUTs

The first setup alternative with an additional switch is presented in Figure 2.6. Similar to the
alternative ‘One NIC for One DUT’ on page 7, the cluster simulator platform is composed of
one network interface only, that establishes the connection to the RTEthernet switch, while the
DUTs are coupled to the switch.

Cluster Simulator

DuT 1

DuT n

CPU-Core Buffer
NIC

(a) One network interface and one CPU
core

Cluster Simulator

DuT 1

DuT n

CPU-Core Buffer
NIC

(b) One network interface and multiple
CPU core

Figure 2.6: Hardware Setup with Additional Switch and one Network Interface

The scheduling of simulated messages at the cluster simulator has to be configured to achieve
an in-schedule message reception at the DUTs. If only one device is tested, the messages
scheduling can be taken from the DUT’s scheduling configuration. Additionally to the physically
imposed transmission delay, the scheduling delays imposed by the switch have to be consid-
ered as well. As addressed in the introduction of this setup classification, the cluster simulator
does not need to exactly transmit TT-messages, since the RTEthernet switch have a higher
timing precision. This reduces the timing requirements for the simulator significantly, because
the messages only have to be causally scheduled.

If more than one DUT is connected to the switch, the cluster simulation becomes more complex
and can cause conflicts that have to be resolved before configuration. In RTEthernet networks
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it is possible that parallel message transmission occurs. Therefor, the DUTs connected to
the switch can send and receive messages independently which leads to the following conflict
scenarios because multiple Ethernet connections are integrated to a single connection:

Message scheduling conflict Different TT-messages are configured to be received or sent
at the DUTs at the same point in time. Since in this setup only a single connection to
the cluster simulation is available, a concurrent transmission is excluded by default. The
TT-messages have to be sent sequentially to the RTEthernet switch, which can buffer
the messages for a certain amount of time. It is then responsible for the in-schedule
transmission to the DUTs. If multiple DUTs are transmitting independent TT-messages
at the same point in time to the cluster simulator, the RTEthernet switch have to sequence
and integrate the concurrent messages, which leads to the following conflict:

Bandwidth conflict Since multiple connections are integrated to a single connection, a further
conflict scenario may be the available bandwidth at the connection from the RTEthernet
switch to the cluster simulator. If the DUTs are using a lot of bandwidth, for example
to send a raw video stream, the overall used bandwidth of all connected DUTs must be
less than the available bandwidth on the connection from the cluster simulator to the
RTEthernet switch. Otherwise a cluster simulation can not be accomplished properly
and TT-messages cannot be sequenced by the RTEthernet switch.

If the switch has to sequence TT-messages it adds an additional delay to the TT-messages. The
timing constraints of TT-messages cannot be observed by the cluster simulator anymore.

To allow an analysis of the traffic that is shared between the DUTs, a further route to the
simulation platform has to be configured to the switch. This can only be applied if enough
bandwidth is available within the regular messages.

Moreover, performance issues are likely to happen more often, if more then one DUT is con-
nected. Like in the previously presented cluster simulation classification, simplifications have
to be applied. Furthermore, a multi-core, multi-process architecture (Fig. 2.6b on the preceding
page) can be used to improve the simulation capabilities.

This setup can be used during the unit testing or integration phase, depending on the amount
of connected DUTs.

Advantages This setup provides the option to test multiple devices by using one NIC. If only
one DUT is connected to the switch, the configuration and hardware cost for the actual
cluster simulator platform are rather small. The scheduling of the to be simulated mes-
sages can be taken directly from the DUTs. Since the precision of the additional switch
is used, the cluster simulators hardware can be built upon off-the-shelf components, that
run a RTEthernet stack.
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Disadvantages This setup requires an additional RTEthernet switch, which results in further
hardware costs. Moreover, the disadvantage of this setup outcrops when multiple de-
vices are tested. The bottleneck is the available bandwidth at connection between the
cluster simulator and the additional RTEthernet switch. Further message scheduling and
bandwidth conflicts have to be resolved or at least analyzed. Additionally, an analysis of
the shared traffic can not be easily applied in this approach.

Multiple NICs for Multiple DUTs

The next possible setup alternative is depicted in Figure 2.7. In this setup, the cluster simulator
has multiple interfaces (one interface per DUT), to establish a connection to the RTEthernet
switch and can be seen as a combination of the alternatives ‘Multiple NICs for Multiple DUTs’
on page 8 and ‘One NIC for One or Multiple DUTs’ on page 13.

Cluster Simulator

DuT 1

NIC
CPU-Core Buffer

DuT nDuT n

(a) Multiple network interfaces and one
CPU core

Cluster Simulator

DuT 1

NIC
CPU-Core Buffer

DuT nDuT n

(b) Multiple network interfaces and multi-
ple CPU core

Figure 2.7: Hardware Setup with additional RTEthernet switch and multiple network interfaces

This setup solves the bandwidth and scheduling conflict scenarios from the previously pre-
sented approach, imposed by the bottleneck behavior. Since in this approach one NIC per
DUT is used, the switch does not need to integrate several connections to a single connection.
Like in the approach ‘Multiple NICs for Multiple DUTs’ on page 8, the messages have to be
assigned to dedicated NICs in order to trigger the correct DUT.

Traffic analysis that is shared between the DUTs is still difficult, since additional messages
routes have to be configured. In contrast to the previous approach, these routes does not
impose bandwidth conflicts, since the simulator platform is composed of one NIC per DUT.
Nevertheless, the collected traffic from different NICs has to be merged, in order to get an
overall consistent view.

The use-case domain is the integration phase, since more than one DUT can be connected.
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Advantages This setup solves the message scheduling and bandwidth conflicts. Further-
more, shared traffic between the DUTs does not have to be traversed at the cluster
simulator. This results in an overall better simulation performance, since no integration
of data paths have to be applied and the simulation platform does not have to deal with
the connection between the DUTs.

Disadvantages In contrast to Multiple NICs for Multiple DUTs, an additional RTEthernet switch
is required and the implementation costs rise with the number of DUTs.

Distributed Simulator for Multiple DUTs

A distributed simulator approach is also possible for alternatives with additional RTEthernet
switches and is depicted in 2.8. The simulator is distributed on several sub simulation platforms,
that are interconnected via additional RTEthernet switches and multiple connected DUTs.

Cluster Simulator

Cluster Simulator

DuT 1

DuT nDuT n

NIC
CPU-Core Buffer

(a) Distributed approach with one CPU
core

Cluster Simulator

Cluster Simulator

DuT 1

DuT nDuT n

NIC
CPU-Core Buffer

(b) Distributed approach with multiple
CPU cores

Figure 2.8: Hardware setup for a distributed approach with a additional RTEthernet switch

Like alternative ‘Distributed Simulator for Multiple DUTs’ on page 10, this setup is a special
case from the previously presented approaches, where the simulation sub systems have to
be synchronized. Also an overall traffic analysis is hard to achieve, due to the fact that each
subsystem is likely to collect messages in its own subsystem. The captured traffic has to be
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merged from all subsystems to get an system wide consistent view. Again, the corresponding
utilization domain is the integration phase.

Advantages If a subsystems consists of multiple network interfaces (one per DUT), this setup
has no bandwidth or timing restrictions.

Disadvantages On the other hand, such an alternative setup has the highest hardware and
implementation costs, which makes this approach under economical sight rather infeasi-
ble.

2.2.3 Discussion of RTEthernet Cluster Simulation Hardware Setups

The last section has presented possible hardware setups for RTEthernet based networks in
detail. In dependency of the number of to be tested devices and the characteristics of the
alternatives, some setups become irrelevant. This section will conclude and determine the rel-
evant setup topologies. If only one device shall be tested, ‘One NIC for One DUT’ on page 7 is
economically the best opportunity to perform unit testing, since no further hardware is needed.
Performance issues are likely not to happen, since only serial data transmission occurs. An
abstraction from the real behavior of a simulated node has to be applied to simplify the cluster
simulation, if the simulation model is too complex to be executed properly.

On the other side, if a system is to be integrated, setups that provides a direct connection
to the DUTs are not suitable, because of their resulting timing conflicts, when communication
between the DUTs occurs. The hand over of messages from one interface to another can
influence the simulation performance and makes a real-time behavior impossible. Therefore,
alternative ‘One NIC for One or Multiple DUTs’ can be utilized, if no bandwidth and scheduling
conflicts appear. The conflicts can be resolved, by utilizing one network interface per DUT (pre-
sented in alternative ‘Multiple NICs for Multiple DUTs’). If simulation performance is a problem,
the utilization of a multi-process, multi-core architecture is possible. Distributed alternatives
(‘Distributed Simulator for Multiple DUTs’ and ‘Distributed Simulator for Multiple DUTs’) pro-
vides additional problems and should not be applied. It is better to use a RTEthernet switch
with several ports.

Hence, a cluster simulation should be implemented to achieve the best trade-off between sim-
ulation performance in hardware and implementation cost. Therefore an abstract model is
needed to calculated, whether a selected topology is suitable in dependency of the DUTs. The
next chapter presents the a formal model of a message flow system and according functions
to enable such a calculation.



3 Formal Description of Messages in
Cluster Simulation

This chapter deals with a formal representation of messages inside a RTEthernet network
in order to calculate required attributes of a cluster simulation in dependency of the number
of DUTs. The base elements are taken from the FIBEX4TTEthernet [16] extension, which
is used to describe a complete RTEthernet network as a XML document. In the beginning,
first fundamental definitions are clarified. Afterwards, set definitions to model a message-flow-
system of RTEthernet networks and according functions to calculate the required attributes are
presented. Finally, limitations to the model are described.

3.1 Fundamental Definitions
Definition 3.1.1 (Definition of Natural Numbers)

In this work, N is defined as followed:

N = N+ = N0\{0} = {1, 2, 3, . . .}
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Definition 3.1.2 (Tuple Selector )

Let tuple be a n-tuple:

tuple =(a1, a2, . . . an) ∈ TUPLE
TUPLE ∈ (M1 ×M2 × . . . Mn), n ∈N

The access of an element of the n-tuple is defined via selector functions

tuple.a1 : TUPLE→ M1

tuple.a1(a1, a2, . . . an) = a1

tuple.a2 : TUPLE→ M2

tuple.a2(a1, a2, . . . an) = a2
...

tuple.an : TUPLE→ Mn

tuple.an(a1, a2, . . . an) = an

3.2 Set Definitions of a Message Flow System

3.2.1 Base Elements

Definition 3.2.1 (ECU)

Electronic control units ECU is a finite not empty set.

ECU = {ecu1, ecu2, . . . ecun} 6= ∅, n ∈N

Electronic control units can be sensors, actuators or controllers in a distributed real-time sys-
tem.

Definition 3.2.2 (CE)

Coupling elements CE is a finite not empty set.

CE = {ce1, ce2, . . . cen} 6= ∅, n ∈N

In the case of RTEthernet, coupling elements are switches that interconnect (couple) ECUs or
other coupling elements (switches).
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Definition 3.2.3 (DEV )

Devices DEV is a finite not empty set.

DEV = ECU ∪ CE , where

ECU ∩ CE = ∅

Devices in RTEthernet networks are either ECUs or switches.

Definition 3.2.4 (PORT )

PORT is a finite not empty set.

PORT = {port1, port2, . . . portn} 6= ∅, n ∈N

A port defines a physical element (network interface) that establishes a connection to the
RTEthernet network.

Definition 3.2.5 (FRAME)

Let id be the identifier of a frame, then Idbe ⊆ N is defined as best effort, Idrc ⊆ N as rate
constrained, Idtt ⊆N as time triggered id, where:

• Idbe ∩ Idrc = ∅

• Idbe ∩ Idtt = ∅

• Idtt ∩ Idrc = ∅

A frame f rame is a triple.

f rame =(id, len, payload) ∈ ((Idbe ∪ Idrc ∪ Idtt)×N× PAYLOAD)

PAYLOAD = {(x1, x2, . . . xn) | xi ∈ {0, 1} , n ∈N} , where:

• id is the identifier,

• len the length in bytes and

• payload the payload of the frame.

A frame is the container in which information is transmitted through the network. FRAME is the
corresponding finite not empty set.

FRAME ∈ P((Idbe ∪ Idrc ∪ Idtt)×N× PAYLOAD)\∅
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3.2.2 Composed Elements

Definition 3.2.6 (DEVICE PORT )

A device port dp is a tuple that assigns a port to a device.

dp = (port, dev) ∈ (PORT × DEV) where :

• port is the physical port

• dev is the dedicated device

DEVPORT is the corresponding finite not empty set.

DEVPORT ∈ P(PORT × DEV)\∅

A device port is the logical network port of a device that establishes a connection to the net-
work.

Definition 3.2.7 (BEMESSAGE)

A best effort message mbe is a triple

mbe =(beSenderPort, BeReceiverPorts, f rame)
∈ (DEVPORT ×P(DEVPORT)\∅× FRAME) where:

• beSenderPort is the sending device port of the,

• BeReceiverPorts the set of receiving device ports,

• f rame is the frame of a message

and where:

• BeSenderPort /∈ ReceiverPorts

• f rame.id ∈ Idbe

A best effort message is used to transmit non-critical messages in a real time Ethernet network.
MESSAGEBE is the corresponding finite not empty set.

MESSAGEBE = P(DEVPORT ×P(DEVPORT)\∅× FRAME)\∅
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Definition 3.2.8 (RCPORT )

A rate-constrained device port rcdp is a triple.

rcdp = (port, dev, bag) ∈ (PORT × DEV ×N) where:

• port is the physical port

• dev is the dedicated device

• bag is the corresponding bandwidth allocation gap (BAG) according to the AFDX [17]
protocol in nanoseconds. A BAG defined as zero is not allowed according the AFDX
protocol, since this would result in a constant message transmission.

A rate-constrained device port extends the device port to allow defining timing constraints at
ports. Therefor, a rcdp assigns a time value to the port. RCDEVPORT is the corresponding
finite not empty set.

RCDEVPORT ∈ P(DEVPORT ×N)\∅
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Definition 3.2.9 (RCMESSAGE)

A rate-constrained message mrc is a triple.

mrc =(rcSenderPort, RcReceiverPorts, f rame)
∈ (RCDEVPORT ×P(RCDEVPORT)\∅× FRAME) where:

• rcSenderPort is the sending device port,

• RcReceiverPorts the set of receiving device ports,

• f rame is the frame of a message

and where:

• rcSenderPort /∈ RcReceiverPorts

• f rame.id ∈ Idrc

• ∀ rcRecPort ∈ RcReceiversPorts : rcRecPort.bag = rcSenderPort.bag

Rate constraint messages are used to transmit event based time critical messages in a real-
time Ethernet network. MESSAGERC is the corresponding finite not empty set.

MESSAGERC ∈ P(RCDEVPORT ×P(RCDEVPORT)\∅× FRAME)\∅

Definition 3.2.10 (TTPORT )

A time-triggered device port ttdp is a triple.

ttdp = (port, dev, actionPit) ∈ (PORT × DEV ×N0) where:

• port is the physical port

• dev is the dedicated device

• actionPit is the absolute point in time in which the action (send / receive) will be trig-
gered.

A time-triggered device port extends the device port to allow defining an absolute timing con-
straint for an action at the according port. Therefor ttdp assigns a time value to the port.
TTDEVPORT is the corresponding finite not empty set.

TTDEVPORT ∈ P(DEVPORT ×N0)\∅
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Definition 3.2.11 (TTMESSAGE)

A time-triggered message mtt is a quadruple

mtt = (ttSenderPort, TtReceiverPorts, f rame, period)
∈ (TTDEVPORT ×P(TTDEVPORT)\∅× FRAME×N) where:

• ttSenderPort is the sending device port

• TtReceiverPorts the set of receiving device ports

• f rame is the frame of a message

• period is the period in which the message transmission is repeated

and where:

• ttSenderPort /∈ TtReceiverPorts

• f rame.id ∈ Idtt

• ∀ ttRecPort ∈ TtReceiverPorts : ttRecPort.actionPit� ttSenderPort.actionPit

Time triggered messages are used to transmit periodically sent time critical messages in a
real-time Ethernet network. MESSAGETT is the corresponding finite not empty set.

MESSAGETT ∈ P(TTDEVPORT ×P(TTDEVPORT)\∅× FRAME)\∅

Definition 3.2.12 (MESSAGES)

M is the set of all messages

M = (MESSAGEBE ∪MESSAGERC ∪MESSAGETT)

where:

• (MESSAGEBE ∩MESSAGERC) = ∅

• (MESSAGEBE ∩MESSAGETT) = ∅

• (MESSAGERC ∩MESSAGETT) = ∅

These different messages allows a RTEthernetwork defining a mixed critical system.
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Definition 3.2.13 (Message Flow System)

A message flow system messageFlow is a tuple that represents the message flow of a mixed
critical RTEthernet network system.

m f sys = (Dev, Messages, clustercycle) ∈ (P(DEV)×P(M)×N) where:

• Dev is the set of devices,

• Messages the set of Messages in the network and

• clustercylce describes the cycle of the cluster for the time-triggered traffic

MFSYS is the corresponding finite not empty set.

MFSYS ∈ P(P(DEV)×P(M)×N)\∅

A message flow system is dependent on the overall participating devices in the network, the
messages that are transmitted and the cycle in which the time-triggered message scheduling
will repeat. The cluster cycle must be the least common multiple of all periods of the messages.
Otherwise no suitable schedule can be calculated.

3.3 Definitions of Functions

This section will present functions that allow calculating the cluster simulation attributes, in
order to find the best matching RTEthernet cluster simulation topology in dependency of the
number of devices under test.
Definition 3.3.1 (Transmitted Messages from Device under Test)

Let m f sys ∈ MFSYS a valid message flow system
and dut ∈ m f sys.Dev then
messagestransmitted : DEV → P(M)

messagestransmitted(dut) = {m | m ∈ M : m.beSenderPort.dev = dut
∨m.rcSenderPort.dev = dut
∨m.ttSenderPort.dev = dut}

(3.1)

This function is used to calculate the messages that are transmitted by a device under test.
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Definition 3.3.2 (Received Messages by Device under Test)

Let m f sys ∈ MFSYS a valid message flow system
and dut ∈ m f sys.Dev then
messagesreceived : DEV → P(M)

messagesreceived(dut) = {m | m ∈ M∧ ∃ recv ∈ ( m.BeReceiverPorts
∪m.RcReceiverPorts
∪m.TtReceiverPorts) :

recv.dev = dut}

(3.2)

This function is used to calculate the messages that are received by a device under test.

Definition 3.3.3 (All to be simulated messages by the cluster simulator)

Let m f sys ∈ MFSYS be a valid message flow system
and DUT ⊆ m f sys.Dev then
allSimMessagesByCS : P(DEV)\∅→ P(M)

allSimMessages(DUT) =
⋃

dut∈DUT

messagesreceived(dut)\

((
⋃

dut∈DUT

messagesreceived(dut))
⋂
(

⋃
dut∈DUT

messagestransmitted(dut))
(3.3)

This function calculates all messages that have to be imitated by the cluster simulator in depen-
dence of the selected devices under test. Messages that are exchanged between the selected
devices under test are not to be simulated.

Definition 3.3.4 (All to be received messages by the cluster simulator)

Let m f sys ∈ MFSYS be a valid message flow system
and DUT ⊆ m f sys.Dev then
allRecMessagesByCS : P(DEV)\∅→ P(M)

allRevMessages(DUT) =
⋃

dut∈DUT

messagestransmitted(dut)\

((
⋃

dut∈DUT

messagesreceived(dut))
⋂
(

⋃
dut∈DUT

messagestransmitted(dut))
(3.4)

This function calculates all messages that have to be received by the cluster simulator in de-
pendence of the selected devices under test. Again, messages that are exchanged between
the selected devices under test are not to be received.
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Definition 3.3.5 (All messages located at the cluster simulator)

Let m f sys ∈ MFSYS be a valid message flow system
and DUT ⊆ m f sys.Dev then
allMessagesAtCS : P(DEV)\∅→ P(M)

allMessagesAtCS(DUT) = allRevMessages(DUT) ∪ allSimMessages(DUT)
(3.5)

This function calculated all messages that are either received or transmitted by the cluster
simulator in dependence of the selected devices under test.

Definition 3.3.6 (Message Bandwidth Consumption)

Let m f sys ∈ MFSYS be a valid message flow system
and m ∈ m f sys.Messages ∧m ∈ MESSAGETT then
bandwidthTT : MESSAGETT → Q

bandwidthTT(m) =
m. f rame.len + 20

m.period
(3.6)

or m ∈ m f sys.Messages ∧m ∈ MESSAGERC then
bandwidthRC : MESSAGERC → Q

bandwidthRC(m) =
m. f rame.len + 20

m.rcSenderPort.bag
(3.7)

These functions calculate the message bandwidth consumption on a direction. Hence,
bandwidthRC (equation 3.7 ) can only estimate the worst case bandwidth consumption, since
it is not clear, whether message transmission occurs. Since the Ethernet’s specific inter packet
gap (IPG) and preamble, which is 12 respectively 8 Bytes [18], also affects the bandwidth
consumption, these values have to be added to the fame size.
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Definition 3.3.7 (Accumulated Critical Message Bandwidth Consumption of a DuT )

Let m f sys ∈ MFSYS be a valid message flow system
and dut ∈ m f sys.Dev then
bandwidthDuT : DEV → Q

bandwidth(dut) = ∑
i∈I


bandwidthTT(mi), if mi ∈ MESSAGETT

bandwidthRC(mi), if mi ∈ MESSAGERC

0, else

(3.8)

with I = {m ∈ messagestransmitted(dut)}

This function calculates the accumulated consumed worst case bandwidth of all critical mes-
sages send by the DUT. For best effort messages, no transmission period is defined which
allows an estimation of the worst case bandwidth. Thus, the worst case bandwidth of best
effort messages cannot be estimated.

Definition 3.3.8 (Replication Rate of a TTMessage)

Let m f sys ∈ MFSYS be a valid message flow system
and m ∈ m f sys.Messages ∧m ∈ MESSAGETT then
replRate : MESSAGETT →N

replRate(m) =
m f sys.clustercycle

m.period
(3.9)

The replication rate calculates how often a time-triggered message is transmitted during the
cluster cycle.
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Definition 3.3.9 (Absolute Action Points in Time)

Let m f sys ∈ MFSYS be a valid message flow system
and m ∈ m f sys.Messages ∧m ∈ MESSAGETT
and ttport ∈ m.TtReceiverPorts then
absActionPITs : TTDEVPORT ×MESSAGETT → P(N0 ×MESSAGESTT)

absActionPITS(ttport, m) =
N⋃

i=1

(ttport.actionPit ∗ i, m) ∈ (N0 ×MESSAGESTT)

(3.10)

with N = replRate(m)

This function calculates a set of action points to a corresponding message.

Definition 3.3.10 (Action Points in Time of Transmitted TTMessages at a Device)

Let m f sys ∈ MFSYS be a valid message flow system
and dut ∈ m f sys.Dev then
actionPITo f TransmittedTTMessages : DEV → P(N0 ×MESSAGETT)

actionPITso f TransmittedTTMessages(dut) =⋃
m∈M

absActionPITS(m.ttSenderPort, m) (3.11)

with M = {m | m ∈ m f sys.Messages ∧m ∈ MESSAGETT :
m.ttSenderPort.device = dut}

actionPITso f TransmittedTTMessages calculates the all action points of transmitted TTMes-
sages at the given device under test.
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Definition 3.3.11 (Action Points in Time of Received TTMessages at a Device)

Let m f sys ∈ MFSYS be a valid message flow system
and dut ∈ m f sys.Dev then
actionPITso f ReceivedTTMessages : DEV → P(N0 ×MESSAGETT)

actionPITso f ReceivedTTMessages(dut) =⋃
m∈M

absActionPITS(ttRecvPort, m) (3.12)

with M = {m | m ∈ m f sys.Messages ∧m ∈ MESSAGETT

∧ ∃ recvPort ∈ m.TtReceiverPorts :
recvPort.device = dut}

and ttRecvPort = ∃! ttRecvPort ∈ m.TtReceiverPorts : ttRecvPort = dut

actionPITo f ReceivedTTMessages calculates the all action points of received TTMessages
at the given device under test.

Definition 3.3.12 (Transmitted TTMessages with the same Action Points by selected DUTs)

Let m f sys ∈ MFSYS be a valid message flow system
and DUT ⊆ m f sys.Dev then
messagesWithSameTransmissionActionPIT : P(DEV)\∅→ P(MESSSAGESTT)

messagesWithSameTransmissionActionPIT(DUT) =
{m | ∀ap ∈ AP ∧m ∈ ap.ttMessage : ap.actionPIT = ap.actionPIT′}

(3.13)

with AP =
⋃

dut∈DUT

{(actionPIT, ttMessage)

∈ actionPITo f TransmittedTTMessages(dut)}

messagesWithSameActionPIT calculates the messages, that have the same transmission
action point in time at selected DUTs. Only if this this set is empty an, a cluster simulation can
be performed without an adaptation of the schedule in the an RTEthernet switch, that relays
the messages from the DUTs to the simulator.
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Definition 3.3.13 (Received TTMessages with the same Action Points by selected DUTs)

Let m f sys ∈ MFSYS be a valid message flow system
and DUT ⊆ m f sys.Dev then
messagesWithSameReceiveActionPIT : P(DEV)\∅→ P(MESSSAGESTT)

messagesWithSameReceiveActionPIT(DUT) =
{m | ∀ap ∈ AP ∧m ∈ ap.ttMessage : ap.actionPIT = ap.actionPIT′}

(3.14)

with AP =
⋃

dut∈DUT

{(actionPIT, ttMessage)

∈ actionPITo f ReceivedTTMessages(dut)}

messagesWithSameReceiveActionPIT calculates the messages, that have the same receive
action point in time at selected DUTs. Only if this this set is empty, a cluster simulation can be
performed without an adaptation of the schedule at the cluster simulator.

3.4 Limitations of the Formal Model

The Fibex4TTEthernet model allows assigning dedicated offsets to periods of TTMessages, in
order to refine the schedule of TTMessages. This is currently not realized in the formal model
of this message-flow-system, since the focus was set towards cluster simulation attributes cal-
culation capabilities and not to re-implement the RTEthernet protocol in another model.



4 Using the Framework for an Example
Network Configuration

This Chapter will present results of the formal framework, implemented as a Java applica-
tion, utilized on an example RTEthernet network cluster. This network is used to demonstrate
RTEthernet structures, where critical and uncritical applications communicate over the same
physical infrastructure. First, the network structure is presented and afterwards results from
the framework.

4.1 Decription of the used example Network

The example network is taken from an existing RTEthernet application that is used to demon-
strate an automotive application with different message-classes. The structure is depicted in
Figure 4.1 on the following page and consists of two RTEthernet switches connecting an RTEth-
ernet backbone and six different ECUs. Whereas five ECUs are located at the left switch and
two ECUs on the right.

The ‘Controller’ is responsible to control a critical drive-by-wire application with according sen-
sors and actuators represented by the ECUs ‘Wheel Bridge’ and ‘Steering Wheel Bridge’. Both
bridges transmit status information and command confirmation back to the ‘Controller’ to enable
a control-loop. The ‘Infotainment’ ECU controls the ‘Headlights’ and can modify the steering
wheel attributes like force and torque. The ‘Headlights’ also communicate their current light
status back to the ‘Infotainment’, which further streams uncritical video data to the ‘Rearseat
Display’ via a second network interface. As devices-under-test the ‘Controller’, ‘Bridge Wheel’
and both ‘Headlights’ are selected, in order to allow closely realistic results.

These applications represents the typically existing message-classes inside a modern car in-
frastructure. Critical control-loop tasks, like a drive-by-wire application uses TT-messages
which have the highest timing accuracy. Event-based critical tasks, like headlight are mod-
eled within RC-messages. Multimedia streaming applications are modelled with BE-messages,
since they are not allowed to influence critical tasks.
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Figure 4.1: The used example Network
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4.2 Framework Results

In this section, results from the message-flow framework are presented. First, the ‘Controller’
is selected as a single DUT. Afterwards, to check cluster simulation configurations with multiple
devices, the ‘Controller’ and the ‘Bridge Wheel’ are chosen. As last use-case, both ‘Headlights’
represent the DUTs.

4.2.1 Using the Framework for the Controller as DUT

Messages at the Cluster Simulator

Table 4.1 depicts all received and transmitted messages by the cluster simulator. Received
messages are generated by the DUT Controller and to be simulated messages are transmitted
by the cluster simulator. In this example, the controller does not receive any BE-messages.

Received messages To be simulated messages

RCMessage: FRAME-VL_0 RCMessage: FRAME-VL_281
RCMessage: FRAME-VL_602 RCMessage: FRAME-VL_582
RCMessage: FRAME-VL_603 RCMessage: FRAME-VL_583
RCMessage: FRAME-VL_604 RCMessage: FRAME-VL_584
RCMessage: FRAME-VL_PCF TTMessage: FRAME-VL_182
TTMessage: FRAME-VL_200 TTMessage: FRAME-VL_183
TTMessage: FRAME-VL_201 TTMessage: FRAME-VL_210
TTMessage: FRAME-VL_20A TTMessage: FRAME-VL_211
TTMessage: FRAME-VL_252 TTMessage: FRAME-VL_21A
TTMessage: FRAME-VL_80

Table 4.1: Received and to be simulated messages by the cluster simulator

Worst case Bandwidth Accumulation

In this example the bandwidth allocation gap (BAG) is defined as 500 µs. All messages have a
fixed size of 64 Byte, which results in the following worst case bandwidth of all accumulated to
be received messages 6.182MBit/s.
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Message Scheduling of Controller

Since only one device will be tested, the TT-message scheduling is sequential. No conflicts
can be observed, since all action points in time appear only once.

Action PIT [ µs ] Received Message Transmitted Message

225 - TTMessage: FRAME-VL_201
475 - TTMessage: FRAME-VL_80
595 - TTMessage: FRAME-VL_200
675 TTMessage: FRAME-VL_211 -
805 - TTMessage: FRAME-VL_252

1060 TTMessage: FRAME-VL_210 -
1200 - TTMessage: FRAME-VL_20A
1425 TTMessage: FRAME-VL_182 -
1465 TTMessage: FRAME-VL_183 -
1605 TTMessage: FRAME-VL_21A -

Table 4.2: Messages scheduling at the DUT

4.2.2 Using the Framework for the Controller and Bridge Wheel as
DUTs

Messages at the Cluster Simulator

In contrast to the first example with one DUT, the messages located at the cluster simulator are
less, since most of the messages are exchanged only between the controller and the wheel.

Received messages To be simulated messages

RCMessage: FRAME-VL_604 RCMessage: FRAME-VL_584
TTMessage: FRAME-VL_200 TTMessage: FRAME-VL_210
TTMessage: FRAME-VL_201 TTMessage: FRAME-VL_211
TTMessage: FRAME-VL_20A TTMessage: FRAME-VL_21A

Table 4.3: Received and to be simulated messages by the cluster simulator
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Worst case Bandwidth Accumulation

Since the cluster simulator receives less messages than in the previous example, also the
worst case bandwidth consumption is less and is accumulated with 1.747MBit/s.

Message Scheduling of Controller and Bridge Wheel

In the example with two connected DUTs, the results show no scheduling conflicts.

Action PIT [ µs ] Received Message Transmitted Message

225 - TTMessage: FRAME-VL_201
595 - TTMessage: FRAME-VL_200
675 TTMessage: FRAME-VL_211 -

1060 TTMessage: FRAME-VL_210 -
1200 - TTMessage: FRAME-VL_20A
1605 TTMessage: FRAME-VL_21A -

Table 4.4: Message scheduling of the DUTs

4.2.3 Using the Framework for the Headlight Controllers

Messages at the Cluster Simulator

Received messages To be simulated messages

RCMessage: FRAME-VL_410 RCMessage: FRAME-VL_400
RCMessage: FRAME-VL_411 RCMessage: FRAME-VL_401

RCMessage: FRAME-VL_PCF

Table 4.5: Received and to be simulated messages by the cluster simulator

Worst case Bandwidth Accumulation

The worst case bandwidth for these two DUTs is 2.688MBit/s.
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Message Scheduling of the Headlightcontrollers

The headlight controllers are triggered with RC-messages and on the other side, they transmit
RC-messages only. As a result, no scheduling conflicts can occur, as long as the messages
stick to the BAG.

4.2.4 Discussion of the Applied Model

TT-messages in this network are scheduled sequentially. As a consequence, scheduling con-
flicts (TT-messages have to be transmitted, or received at the cluster simulator) are impossible.
Furthermore, all critical frames have a fixed frame size of 64 Byte and the cluster cycle repe-
tition is 5ms. TT-messages have the same period as the cluster cycle (5 ms) or a configured
BAG with 500 µs which results in a relatively low bandwidth consumption. The repetition rate
of BE-messages is not modeled within the presented formal framework, since it is not modeled
within FIBEX, too.

As conclusion a cluster simulation can be properly performed for all described cases with al-
ternative ‘One NIC for One or Multiple DUTs’ on page 13. For one device (the controller in this
example) also alternative ‘One NIC for One DUT’ on page 7 is possible.



5 Conclusion & Outlook

This chapter concludes and gives and outlook about upcoming work.

RTEthernet is a switched network technology and provides a dedicated collision domain for
each network participant, which allows a parallel transmission of independent messages at
the same time. Therefor hardware setups and topologies for RTEthernet cluster simulation
are different compared to setups and the topology for bus based networks. Nevertheless,
the idea to use a multicore / multi-process approach can be adapted to gain more simulation
performance. If the simulation model is too complex to run properly on the cluster simulator, it
has to be simplified.

In general, RTEthernet cluster simulations can be distinguished in hardware setups with a direct
connection between the simulator and the DUTs and in setups with a an additional RTEthernet
switch. If more than one device is to be tested, setups with an additional switch are preferred.
In setups with a direct connection, the shared traffic has to handed over at the cluster simulator,
which results in a not deterministic timing behavior. However, setups with an additional switch
can produce scheduling and bandwidth conflicts if only one network interface is used by the
cluster simulator. If these conflicts cannot be resolved, the cluster simulator must be composed
of multiple network interfaces.

To calculate whether there exist any conflicts, a formal model basing on set definitions was
introduced. This model is independent of the used network configuration file (i. e. FIBEX or
TTEthernet Network Description) as input. The formal model provides functions to calculate
the consumed bandwidth or scheduling conflicts in dependency of selected DUTs. The formal
model was implemented as a Java application and applied on an example RTEthernet network,
which is used to demonstrate future in-car communication. The results show that a cluster
simulation with one network interface and an additional switch can be properly performed.

Since this network was rather simple and did not provide any concurrent transmission of TT-
messages the formal model has to be applied to a more complex network scenario. Further-
more, the formal model can be used to generate configuration files for a cluster simulation.
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