Real-time Ethernet Residual Bus Simulation: A Model-Based Testing Approach for the Next-Generation In-Car Network

Florian Bartols Till Steinbach Franz Korf Bettina Buth Thomas C. Schmidt

Hamburg University of Applied Sciences florian.bartols@haw-hamburg.de

October 10th, 2014 22nd International Conference on Real-Time Networks and Systems

Hochschule für Angewandte Wissenschaften Hamburg Hamburg University of Applied Sciences SPONSORED BY THE

Software and functions in modern cars

- Functions are implemented mostly in software today
- Utilization of software directly influences the development costs
- Testing in early development stages reduces these costs
- Distributed development makes early testing difficult

RT-Ethernet Residual Bus Simulation

F. Bartols

Motivation & Introduction

Background

RT Ethernet RBS

Application & Results

Complex In-Car Interconnections

RT-Ethernet Residual

Bus Simulation F. Bartols Motivation & Introduction Background RT Ethernet RBS Application & Results Conclusion & Outlook

 The complexity of current in-car interconnections is hardly manageable

Complex In-Car Interconnections

RT-Ethernet Residual Bus Simulation

F. Bartols

Motivation & Introduction

Background

RT Ethernet RBS

Application & Results

Conclusion & Outlook

 RT Ethernet for in-car interconnection reduces the complexity

Contribution

- Testing systems and applications in early development stages is important
- New applications will rely on RT Ethernet as communication technology
- Suitable methodology is needed to validate distributed applications
- RT Ethernet Residual Bus Simulation enables early testing
- Combination of model-based testing principles to validate non-functional requirements

RT-Ethernet Residual Bus Simulation

F. Bartols

Motivation & Introduction

Background

RT Ethernet RBS

Application & Results

Conclusion & Outlook

Agenda

- 2 Background
- 3 Real-time Ethernet Residual Bus Simulation
- 4 Application & Results
- 5 Conclusion & Outlook

RT-Ethernet Residual Bus Simulation

F. Bartols

Motivation & Introduction

Background

RT Ethernet RBS

Application & Results

Model-based Testing Approach

RT-Ethernet Residual Bus Simulation

F. Bartols

Motivation & Introduction

Background

RT Ethernet RBS

Application & Results

Conclusion & Outlook

The automotive development process is model driven

- Models are utilized as specifications for
 - Representing implementation details
 - Modeling system requirements
- Test cases are systematically inherited from models
- Execution of cases on different test platforms
 - MiL, SiL, PiL, HiL and Residual Bus Simulation

Residual Bus Simulation

RT-Ethernet Residual Bus Simulation

F. Bartols

Motivation & Introduction

Background

RT Ethernet RBS

Application & Results

Conclusion & Outlook

The remaining network is simulated from the viewpoint of the SUT

- SUT and simulator are coupled via the communication interface
- Behavior and network specific characteristics are realistically emulated
- The simulator pretends to be a physical system

RT Ethernet as In-Car Network

- Static designed routing for deterministic behavior
- Synchronized time base for time-triggered communication

Agenda

RT-Ethernet Residual Bus Simulation

F. Bartols

Motivation & Introduction

Background

RT Ethernet RBS

Application & Results

Conclusion & Outlook

Motivation & Introduction

2 Background

3 Real-time Ethernet Residual Bus Simulation

4 Application & Results

5 Conclusion & Outlook

Model-based Methodology

- Requirements are modeled within suitable diagrams
- Test cases are inherited from the diagrams
- Test cases are executed on a suitable residual bus simulation platform

Modeling System Requirements

RT-Ethernet Residual Bus Simulation

F. Bartols

Motivation & Introduction

Background

RT Ethernet RBS

Application & Results

- Classic UML is not sufficient for embedded Real-time Systems
- Utilization of UML-Profile Modeling and Analysis of Real-time Embedded Systems (MARTE)

Abstract Test Cases Definition

System v(t)

RT-Ethernet Residual Bus Simulation

F. Bartols

Motivation & Introduction

Background

RT Ethernet RBS

Application & Results Conclusion & Outlook

Extending the Model

Base Model

u(t

• $ATC_{NFR} = (T, U, Y, L, R, \Delta_L, \Delta_R)$

Modeling specific values of

inputs and outputs at specific points in time

• $ATC_{FR} = (T, U, Y)$

 Extending with reply time (*latency*) & transmission rate (*rate*)

- Abstract representation of to be generated test data
- Modeling functional requirements with expected output
- Modeling non-functional requirements with expected timing constraints
- Utilization as simulation model to drive the simulator

RT-Ethernet Residual Bus Simulation

F. Bartols

Motivation & Introduction

Background

RT Ethernet RBS

Application & Results

Implementation of our Approach

Requirements and Architecture

Requirements

- TTEthernet compliant message transmission
- Support of timing analyzes
- Execution of the abstract test case model

RT-Ethernet Residual Bus Simulation

F. Bartols

Motivation & Introduction

Background

RT Ethernet RBS

Application & Results

Agenda

RT-Ethernet Residual Bus Simulation

F. Bartols

Motivation & Introduction

Background

RT Ethernet RBS

Application & Results

Conclusion & Outlook

Motivation & Introduction

2 Background

3 Real-time Ethernet Residual Bus Simulation

4 Application & Results

5 Conclusion & Outlook

Overview of the physical system

- Light control dashboard transmits new light states
- Headlights reply each received light state and
- Periodically provide their current light state
- Light control dashboard presents the light state to the user

Validating the Headlight Controller Requirement Modelling with UML-MARTE

RT-Ethernet Residual Bus Simulation

F. Bartols

Motivation & Introduction

Background

RT Ethernet RBS

Application & Results

Conclusion & Outlook

Timing requirements of the reply message

- Latency: 500 μs
- Iitter: \pm 50 µs

Validating the Headlight Controller Requirement Modelling with UML-MARTE

RT-Ethernet Residual Bus Simulation

F. Bartols

Motivation & Introduction

Background

RT Ethernet RBS

Application & Results

Conclusion & Outlook

Timing requirements of the message transmission

- Rate: 5000 µs
- Jitter: ± 5 μs

Validating the Headlight Controller

C	Ø	R	E_	
_		_		-

Т	1 s	2 s	5 s	7 s	9 s	11 s		
U	$u_1 = HL_OFF$	$u_1 = LED_0$	$u_1 = \text{LED}_{100}$	$u_1 = LED_50$	$u_1 = \text{LED}_{101}$	$u_1 = LED_75$		
Y	$y_1 = HL_OFF$	$y_1 = LED_0$	$y_1 = \text{LED}_{100}$	$y_1 = \text{LED}_{50}$	$y_1 = LED_50$	$y_1 = \text{LED}_{75}$		
Yact	$y_1 = HL_OFF$	$y_1 = HL_OFF$	$y_1 = HL_OFF$	$y_1 = HL_OFF$	$y_1 = HL_OFF$	$y_1 = HL_OFF$		
L	$l_1(u_1, y_1) = 500 \mu s$							
Δ_L	$j_{L1}(l_1) \le 100 \mu s$							
L _{act}	$l_1(u_1, y_1) = 518 \mu s$ to 518 μs , MED = 518 μs , AVG = 518 μs							
R	$r_1(y_1) = 5000 \mu s$							
Δ_R	$j_{R1}(r_1) \le 10 \mu { m s}$							
R _{act}	$r_1(y_1) = 4998 \mu s$ to 5002 μs , MED = 5000 μs , AVG = 5000 μs							

- Functional requirements cannot be fulfilled
- Expected values are not located at the output
- Non-functional timing requirement are fulfilled
- Latency of the acknowledgement lay within the allowed range

Motivation & Introduction

Background

RT Ethernet RBS

Application & Results

Agenda

RT-Ethernet Residual Bus Simulation

F. Bartols

Motivation & Introduction

Background

RT Ethernet RBS

Application & Results

Conclusion & Outlook

Motivation & Introduction

2 Background

3 Real-time Ethernet Residual Bus Simulation

4 Application & Results

5 Conclusion & Outlook

Conclusion

- Residual bus simulator is directly connected with the SUT
- Message classes and a synchronization procedure are supported
- Non-functional timing requirements are modeled within UML-MARTE
- Abstract test case model models functional and non-functional test data
- Utilization of abstract test cases as simulation model
- Successful utilization for the validation of an RT Ethernet application

RT-Ethernet Residual Bus Simulation

F. Bartols

Motivation & Introduction

Background

RT Ethernet RBS

Application & Results

RT-Ethernet Residual Bus Simulation

F. Bartols

Motivation & Introduction

Background

RT Ethernet RBS

Application & Results

- Investigate how AUTOSAR and EAST-ADL could co-exist with our approach
- Implement a RBS with a more suitable architecture without dual-port memory
- Analyze the real-time and performance aspects of the new architecture

Thank you for your attention

RT-Ethernet Residual Bus Simulation

F. Bartols

Motivation & Introduction

Background

RT Ethernet RBS

Application & Results

Conclusion & Outlook

Visit us at: https://core.informatik.haw-hamburg.de