
Performance Analysis of Time-Triggered
Ether-Networks Using Off-The-Shelf-Components

Florian Bartols, Till Steinbach, Franz Korf, Thomas C. Schmidt
Department of Computer Science

Hamburg University of Applied Sciences, Germany
{florian.bartols, till.steinbach, korf, schmidt}@informatik.haw-hamburg.de

Abstract—The performance analysis and validation of dis-
tributed real-time systems poses significant challenges due to
high accuracy requirements at the measurement tools. A fully
synchronized time-scale at ultrafine granularity is not easy to
generate. Even though there are several analyzer tools for
standard switched Ethernet, these tools cannot be applied in
time-triggered networks, since they do not meet the requirements
of synchronized packet generation. This paper introduces a low
cost and lightweight approach to measure end-to-end latency
of time-triggered Ethernet traffic with off-the-shelf components.
By using standard computer hardware and a real-time Linux
Kernel, it is shown that measurement can be achieved in a
resolution of microseconds. Furthermore, a validation with an
Ethernet performance analyzer and a mathematical framework
is presented to check the given results.

Index Terms—real-time Ethernet, TTEthernet, time-triggered,
benchmarking, end-to-end latency, components-off-the-shelf,
real-time Linux;

I. INTRODUCTION

Today’s vehicles and airplanes are complex distributed real-
time (RT) systems with a high demand of broadband commu-
nication links at guaranteed transmission performance. The
amount of industrial plants with comparable characteristics
grows continuously. These systems require control units that
are connected across a backbone network, which needs to carry
heavy load, while keeping message delays predictable. Due to
the flexible and highly scalable protocol, backbone networks
of industrial plants are often based on real-time Ethernet.

Standard switched Ethernet is a technology that allows
to increase the amount of traffic simultaneously transferred
by using segregated communication in groups. However, due
to its random access and best-effort approach, it does not
provide reliable temporal performance bounds. There are
many attempts to overcome those obstacles like token-based,
bandwidth-limiting or time-triggered Ethernet extensions.

Time-triggered Ethernet (TTEthernet) [1], the protocol ap-
plied in this work, supports several traffic classes with different
qualities for the various real-time related metrics. TTTech [2]
developed in collaboration with Honeywell [3] the TTEthernet
specification that is currently proposed for standardization by
the Society of Automotive Engineers [4]. Even though the
results of this paper are based on TTEthernet, they are mostly
transferable to other time-triggered Ethernet protocols, as well.

Time based Ethernet technologies require time measuring
devices at Ethernet frame level. The information provided by
these instruments are used for many development tasks like

validating hardware and software, or analysis of protocols and
network utilization. Many analyzers like oscilloscopes with
Ethernet support can be used for this kind of temporal mea-
surement. For cost and flexibility reasons, analyzers based on
standard embedded computers and real-time operating systems
(OS) gain importance. Concerning this kind of RT network
analysis, the contribution of this paper is a lightweight analyzer
that supports time measurement in the range of microseconds
at a price below 500$. It is based on an embedded PC and
a Linux OS with RT Kernel patch. Additional hardware like
probes is not required.

The analyzer presented here can be used as a packet
generator, as well, which is due to the flexibility obtained from
the Linux OS running on an embedded PC. An application
running in Userspace generates the packet stream. The network
driver provides the time measurement techniques. Hence this
approach supports any protocol-specific component residing
between application and network driver. In particular, the
analyzer supports the Linux TTEthernet protocol stack.

In this paper we measure end-to-end latency based on time
stamps which are added to the payload of Ethernet frames.
To avoid jitter and time lapses, these stamps are injected
just before a frame is sent from the generating device and
immediately after a frame has been received. The accuracy of
this approach is in the range of a few microseconds and bases
on the 64-bit CPU cycle counter register of Intel x86 CPUs.
To avoid unexpected jitter, a Linux OS with RT Kernel patch
is used. Moreover, system management interrupt (SMI) and
CPU throttling are disabled.

In distributed measurement approaches, where one node is
responsible for keeping the send time and another the receive
time, clock synchronization is required for measurement of
end-to-end latency. Since the analyzer given in this paper is
realized on a single embedded PC with two separate ports
for sending and receiving packets, a synchronized clock is
guaranteed by design.

The remainder of this paper is organized as follows. In sec-
tion II, related work, different time measurement concepts and
the basic requirements for time measurement are introduced.
Section III illustrates background information concerning RT
Ethernet and TTEthernet. The implementation of the off-the-
shelf analyzer is outlined in section IV. Section V evaluates the
presented approach by comparing the results with a hardware
analyzer and a mathematical model. In section VI results



for different measurements are depicted. Finally, section VII
concludes and gives an outlook.

II. RELATED WORK

In the field of real-time performance analysis, hardware-
and software-based measurement approaches exist, whereat
hardware approaches, using additional equipment like probes
are more precise. If timestamps of Ethernet frames collected at
different network ports are to be compared, the corresponding
clocks must be synchronized. Analyzers for time measurement
are divided into three groups. The first supports only one
network interface such that time stamps of frames related to
different network ports cannot be compared. Comparable to
the approach described in this paper, analyzers belonging to
the second group are based on one physical clock for all net-
work ports, so that time analysis between frames of different
network ports is made possible without clock synchronization.
The last group stamps Ethernet frames in a distributed way
using several clocks that are synchronized.
The IXIA 1600T [5] uses a hybrid approach with a granularity
of 10ns. Base measurement units consist of one local clock
and multiple Ethernet ports. For large scenarios these base
units can be connected.
A non commercial approach that uses several FPGA-based
probes with local clocks and a clock synchronization protocol
is presented in [6]. The synchronization accuracy between
these probes is below 100ns. In relation to the approach
presented in this paper, [6] provides a higher accuracy for
1000$. On the other hand the amount of work for assembling,
evaluating and setting up the probes must be taken in account,
too.

For validating hard real-time communication over switched
Ethernet, a distributed software approach was implemented
in [7], where end-to-end latency between two nodes with
an accuracy of 10µs is measured. The time synchronization
protocol is based on an additional “black” cable connecting
both nodes. Moreover, in a distributed measurement the node
which is responsible for latency calculation must have access
to the send- and receive timestamp of a frame. Modifying the
payload of the network frame solves this problem by adding a
timestamp while sending and receiving a packet. Similar to the
approach given in this paper the time measurement described
in [7] applies this technique.

The round-trip-time for real-time applications with 802.1Q
Ethernet is measured in [8]. This is achieved with a software
implementation that uses Linux raw sockets to access a frame
directly. In comparison, the approach presented in this paper
improves accuracy. It collects time stamps in the network
driver just a few machine instructions before a frame will be
sent and a few machine instructions after a frame has been
received.

The utilization of Wireshark [9] based measurements is
discussed in [10]. There are different test setups provided for
using Wireshark and the results are compared to each other.
Since this approach consists of one network port only, it cannot
be applied for distributed measurement. The accuracy of the

measurement results given in this work is improved due to
using the RT Kernel patch for Linux and timestamps taken at
network driver level.

III. TIME-TRIGGERED ETHERNET

In achieving real-time behavior on Ether-Networks, the
main challenge is to prevent RT packets from simultaneously
traversing a switch interface or line card. In general, the
strategies that allow Ethernet based RT communication can be
divided in three different approaches. In token-based systems,
a token is passed to each participant. Only the node that owns
the token is allowed to transmit data. There have been efforts to
use token based protocols for RT communication [11]–[13]. A
commercial product based on a token access policy is Ethercat
[14], which was developed for process automation.

The second class of RT capable Ethernet is given by
bandwidth limiting protocols such as the Avionics Full-Duplex
Switched Ethernet (AFDX) [15]. AFDX is used as commu-
nication protocol in airplanes like A380, the new flagship
product by Airbus. In bandwidth limiting protocols, the maxi-
mum bandwidth is limited at each sender. Specialized switches
survey the input ports to ensure that each sender transmits only
within its assigned bandwidth.

The final group of relevant solutions is given by the time-
triggered protocols. In time-triggered protocols, all senders
operate in a synchronized way. According to coordinated
time division multiple access (TDMA), scheduling defines
permissible transmission times for all senders. This approach
is well known within the automotive industry and based on
previous experiences with TTCAN [16] and FlexRay [17].
In process automation, these protocols dominate deployment.
Examples are Profinet [18] or SynqNet [19].

TTEthernet [1] the technology focused in this paper is
a time-triggered protocol. It was developed by TTTech in
collaboration with Honeywell and can be seen as a new
approach to transmit critical and best-effort traffic on the same
physical infrastructure. Therefore the protocol defines three
different traffic types, which have individual requirements in
timing and transmission.

time-triggered (TT)-traffic has the highest priority, the
strictest timing requirements and is used for hard RT
communication. Sending and receiving is done in a
time-triggered way.

rate-constraint (RC)-traffic uses a guaranteed bandwidth
for transmission and complies to AFDX standard [15].

best-effort (BE)-traffic conforms to standard Ethernet traf-
fic and has the lowest priority and thus, there is no
guaranteed transmission.

Figure 1 shows a sample application in the automotive
context where different traffic classes coexist on the same
link. While time-triggered traffic e.g. for chassis information
is transferred in periodic cycles with the highest priority,
rate-constrained messages are transferred in bandwidth gaps.
Afterwards free bandwidth is filled with best-effort traffic.

In TTEthernet each device has a schedule for time-triggered
messages. This enables a coordinated TDMA network access



TTE-switch

diagnosis

chassis

LIN gateway
door

BE BE BE
0 t

RC
0 t

TTTT RC BE BE BE

0 t

TTTT

cycle
0

t

TT Time-Triggered Message

RC

BE

Rate-Constrained Message

Best-Effort Message

TTE-switch
LIN-BUS

Fig. 1. TTEthernet in-vehicle sample application presenting the usage of the
three traffic types.

policy and ensures that critical traffic is never delayed due to
busy linecards.

To ensure a system-wide time base, TTEthernet provides
a two-step time synchronization protocol for all participants.
Synchronization-Masters are responsible for synchronization
initiation and send in a first step a synchronization message
to a Compression-Master, which calculates an average of all
Synchronization-Masters time bases. In a second step the
Compression-Master sends the synchronization message to the
Synchronization-Masters and to the remaining participants,
formally known as Synchronization-Clients.

In TTEther-Networks TT-frames, which are sent outside
their configured time slot, will be dropped in the TTEther-
net switch [1]. These frames are seen as frames sent by a
faulty device. This kind of error detection is necessary to
avoid failures caused by a babbling idiot. As in this paper
latency measurement of critical traffic is presented, one have
to keep this behavior in mind. A measurement device has
to be synchronized to the system-wide time base. For this
reason standard tools and analyzers, like the presented IXIA
device cannot be used, due to inability of synchronized packet
generation.

IV. IMPLEMENTING AN OFF-THE-SHELF MEASUREMENT
FACILITY

A. Conceptual Overview

In general, operating systems provide tools for latency mea-
surement (i.e. ping, traceroute, etc.) in best-effort networks,
where precision of milliseconds is sufficient.

Most real-time analysis environments pose on the precision
in microseconds, which could not be fulfilled with the given
OS tools. The suggested solution is time measurement on
a low-level base in the OS. Tagging send and receive time
should be done very close to the hardware. When using a
computer system with an OS, time tagging has to move in
the device driver, so that process scheduling and OS-functions
take minimal effect on the measurement. Figure 2 presents the
concept of the discussed approach.

TT-Network
under test 

Hardware Hardware Physical Layer

BE Device Driver
Timestamping

Kernelspace

Application Userspace

TT Device Driver
Timestamping

TTEthernet Stack

Assembling Calculation

Fig. 2. The conceptual overview of the presented approach in three layers.

A Userspace application (see figure 2) is responsible for
frame assembling and for the calculation of the measured end-
to-end latency after reception. The TTEthernet stack, which is
provided by TTTech, ensures that generated frames are sent
in-schedule and will not be dropped inside the TTEthernet
switch. Modified device drivers, developed and discussed in
this paper, are adding current timestamps to the frame while
sending and receiving.

The application and the proper Kernelspace processes are
scheduled with Linux RT-priorities by using the RT Kernel
patch [20].

B. Measurement in Kernelspace

Any tool running in Userspace cannot meet high precision
requirements, because the scheduler and hardware-layer could
produce overhead on timing measurement, especially when
events generated by hardware, interrupts the running process or
process scheduling occurs. Usually, depending on implemen-
tation, these tools use OS functions to get the current system
time. As a consequence these measurement-tools produce
higher jitter.

Based on higher level network protocols, latency mea-
surement could only be realized in systems which support
IP/ICMP. The given OS tools measure the round-trip-time of a
connection. To be predictable, frame routing of critical traffic
in RT-Ether-Networks is done in a static way. Thus, these
routes can be unidirectional or the return path differs. Hence,
the round-trip-time is not applicable for end-to-end latency
measurement.

C. Increasing the Resolution by the Real-time Kernel Patch

In general Linux does not fulfill RT requirements. To enable
RT characteristics in a Linux-based system, there are some
implementations in use, which are operating with a Coop-
Kernel [21]. A separate RT-Kernel handles RT-tasks and is re-
sponsible for scheduling the RT-tasks and the standard Linux-
Kernel, which has the lowest priority. Non RT applications,
like logging functions, can run within the standard Kernel.
Examples can be found in [22], [23].



The RT Kernel patch by Ingo Molnar [20] follows another
approach. This patch enables RT characteristics to the standard
Linux Kernel, by adding complete Kernel preemption, opti-
mized RT interrupt handling [24] and RT scheduling (FIFO
or Round-Robin) of RT-Kernel and RT-Userspace tasks.

The RT patch enhances RT-priorities also to Kernelspace
processes so that they are preemptible by high prior Userspace
processes, which is generally not the case in standard Linux.

When hardware interrupts a running process, the assigned
interrupt service routine (ISR) handling is outsourced in a
kernel process with RT-priority. In this case the ISR preempts
all running processes to only start a process, which is much
faster.

D. Accessing the Current System Time

The knowledge of current system time is essential for
precise measurement. It can be achieved by using timing
hardware or software functions. In Linux-based systems, the
Kernel provides three different approaches of retrieving current
system time to measure time periods [25].

jiffies counter depends on Linux timekeeping architecture
frequency. Usually, in Kernel 2.6.x, the default value
is 1000Hz. It is a 64 bit (platform independent) value
and has a resolution in milliseconds.

get cycles() returns the current value of a 64 bit CPU
counter register. This register increments every CPU
cycle and thus the value depends on its frequency and
CPU design. Using this function on a system which
has no counter register implemented, it returns 0.

do gettimeofday() returns a data structure with current
value in seconds and microseconds of the system.
Depending on system implementation it uses the jiffies
counter or a hardware counter. The resolution is “near
microseconds” when a hardware counter is used.

When external hardware - like timers are used, it must be
ensured that a fast link between these devices and the CPU
exists. The specific link delay depends on the bus architecture
and bus speed.

do gettimeofday() produces overhead by using functions to
convert CPU-cycles in seconds and microseconds. The jiffies
counter is no option in this approach, due to its low resolution
in milliseconds.

In this measurement approach the get cycles()-function is
used. It produces the slightest overhead, because of direct
hardware access and has the highest resolution, which only
depends on CPU-frequency. To get the delay (tlatency) in
human readable form, the latency which is represented as
∆cyclesCPU , will be transformed according to equation 1.
This calculation can be done in Userspace.

tlatency =
1

fCPU [GHz]
∗∆cyclesCPU (1)

The measurement is running on an Intel Atom architecture
and therefore the count register increments on a constant rate
[26]. To make sure CPU-throttling takes no effect on the
measurement, all ACPI-functions have to be disabled.

E. Modifying Ethernet Frames

To get the interval between sending and receiving point in
time, these points must be assigned to an Ethernet frame. One
solution is storing timestamps and frame sequence numbers in
Kernelspace, whereas another solution is adding timestamps
of sending and receiving point in time to the current frame.
Due to the lightweight approach, storing information in Ker-
nelspace is not the preferred way. Instead modifying the frames
is the aimed method to assign timestamps to a frame. There is
another advantage in this approach. Measurement functionality
can be done promptly without using the long way of storing
and reading information out of Kernelspace.

Ethernet frames are tagged with the start value shortly
before they are copied to the hardware controller. On the
receiving side, getting the timestamp is accomplished as soon
as the hardware interrupts. Afterwards, the value is copied
when the frame data is completely accessible in Kernelspace.

In a Userspace application the TT measurement frames are
assembled with Linux raw sockets. Raw sockets are used
to bypass the layer three and four handlers and thus allow
direct access to the whole Ethernet frame. Figure 3 depicts a
complete measurement frame.

Ethernet Frame 
Header Payload CRC

Send Recv Seq

Data 
Measurement

Fig. 3. Complete TT-measurement frame, where Send is the send point in
time, Recv is the receiving point in time and Seq is the sequence number.

The first bytes represent the sending point in time in
CPU-cycles and are followed by the receive point in time.
Additionally, a sequence number is added to get information
about data flow and to identify a frame, when external tools
are used for validation purpose. For this work the remaining
payload does not contain useful data. Anyway, the concept can
be expanded to a quality of service protocol (QoS) inside a
RT application.

The result is then produced in the same application, by
accessing Ethernet frames via raw sockets.

F. RT-Priorities

As the real-time Kernel patch allows assigning RT priorities
for applications and ISR-threads, they have to be adapted for
this approach. The involved measurement applications and
ISRs have to be assigned with higher priorities than others,
in order to avoid preemption and resulting inaccuracy.

G. Disabling the System Management Interrupt

Under unfavorable circumstances problems may occur due
to the system management module while a system manage-
ment interrupt takes CPU time and preempts all running
processes including the OS. Usually, these types of interrupts
are only executed if system safety functions (shutdown on high
CPU temperature) are handled. Thus, the system management



BE TT

Server
Application

timestamp
while sending

timestamp
while receiving

3
2

1

measurement
frames

4
3 ms

system schedule

TT-Network
under test

Fig. 4. The test setup of the used example measurement consists of a 3ms
cycle.

interrupt has to be disabled. If deactivation of the system
management interrupt is disallowed, Linux provides a kernel
module to track the elapsed time [27].

H. Synchronization

In contrast to performance analyses of best-effort traffic,
packet generation has to be synchronized with the schedule for
time-triggered communication. Packages sent out of schedule
will be dropped by the TTEthernet switch. To achieve in-
schedule frames, a time-triggered protocol stack implementa-
tion has to be applied. In this paper the stack of a TTEthernet
evaluation system by TTTech is used. It is compiled for the
RT Linux Kernel and provides adapted device driver to comply
with the protocol stack. The addressed driver modification to
insert timestamps has to be adjusted to it.

V. MEASUREMENT VALIDATION

To evaluate the presented measurement approach, a sample
configuration test setup is measured and verified against an
Ethernet analyzer and a mathematical framework.

A. Measurement Test Setup

The test setup for a sample measurement is depicted in
figure 4. An end system called server sends 100 measurement
frames within the system cycle configuration. A TTEthernet
schedule with a 3ms cycle duration is used. All measurement
frames are transmitted at a predefined point in time and are
sent via the TT device driver and received via the BE device
driver. The reception is done in an event triggered way to
avoid further delays. Additionally, the BE device has to be
configured in promiscuous mode to receive all frames, because
of the TT frame destination address format.

The server is an embedded PC IBX 530 by iEi technology
[28], composed of an Intel 1.6 GHz Atom CPU and two Re-
altek 8168 network interface card (NIC) chipsets. An Ubuntu
Linux 8.04 LTS distribution with the preliminary discussed
real-time patch for Kernel 2.6.24 is used.

This test setup allows end-to-end latency measurement
of any TT-Ether-Network. A TTEthernet switch is used to
represent a “Time-Triggered Ether-Network under test” and
measure its latency. To keep close to standard Ethernet bench-
marking, frames are transmitted according to RFC-2544 [29].

The result of the sample measurement is depicted in figure
5. A gap between 127 and 128 byte frame size can be seen

Fig. 5. Measurement results of standard configuration with 128 byte threshold
in comparison with the modified configuration with 64 byte threshold.

where the latency jumps up of 90µs. This gap is a result of
the used configuration in the BE-device driver. The jitter (in
this paper described as distance of minimum and maximum
delay for a defined frame size within a measurement) is also
related to this gap. On the interval between 64 and 127 byte
frame size the jitter bounds in 10µs whereas on the interval
between 128 and 1518 the jitter bounds in 30µs.

The results of this measurement depend on the used system
schedule configuration. TT-frames are delayed for a pre-
configured amount of time in the TTEthernet-switch to avoid
inaccuracy in transmission. This means TT-frames are allowed
to be received in a window within the system cycle. In this
3ms cycle configuration TT-frames arrive on 800µs on the
incoming port at the TTEthernet switch and are relayed at
1150µs. This relay delay will be defined during network
configuration. The delta of 350µs can be seen as a static
switch relay delay. The propagation delay of an Ethernet frame
for 100Mbit/s Ethernet is 0.08 µs

byte . It is a linear function
depending on frame size and can be seen as a predictable
delay.

The gap of 90µs in figure 5 is a result of the used BE
driver configuration. In standard Linux Kernel configuration,
the NIC copies the frame data to host memory, when a frame
is completely received [30]. After modifying the configuration
with a hard threshold at 64 byte, where data is copied to the
host, a linear gradient is achieved (see figure 5). Therefore
an assigned hardware and driver delay (tHWD) for the used
Realtek network hardware is assumed, which can be calculated
with equation 2.

tHWD = t− tPD − tSD (2)

Where t is the measurement result, tPD the predictable
propagation delay of 100 Mbit/s and tSD is the static switch
configuration delay.

This delay has to be subtracted from every measured result
to get a fair and precise end-to-end latency measurement.



t1 t2

Ethernet
Analyzer

t = t2 - t1

port1 port2 

BE TT

Server
Application

timestamp
while sending

timestamp
while receiving

3

1

measurement
frames

4
3 ms

system schedule

TT-Network
under test

duplicate 
measurement frames

2
2

1

1

Fig. 6. The test setup for approach validation with an Ethernet performance
analyzer.

For jitter bounds measurements, frame sizes ≤ 127 byte are
adequate. The jitter complies with the given synchronization
precision of the used network under test which is in single-
digit microseconds range.

B. Validating the Measurement Approach

To validate the results of the measurement setup a test setup
using a standard hardware analyzer for Ethernet is built up
and a mathematical framework of the TTEthernet forwarding
components [31] is used.

1) Hardware Sniffer: For validation with hardware an
Ethernet performance analyzer by IXIA [5] is used. This
device has several Ethernet ports and a synchronized time
base in nanoseconds. In general, one port is used as a packet
generator and another as a consumer. Since the IXIA 1600T
does not support the TTEthernet synchronization to generate
in-schedule frames, this approach cannot be used. Instead a
further test setup given in figure 6 is applied. Basically, it is the
same way as presented in [6] to measure RT-Ether-Networks.
The server is still used as an in-schedule-producer and both
ports on IXIA as consumer.

The first port is located right before the TT-network-under-
test, the second behind it, so it is possible to measure the
distance of one frame. Additionally, a standard Ethernet switch
to duplicate measurement frames had to be included. This
is realized due to Multicast destination addresses, a frame
will be relayed on all connected ports except the one which
received it. For precise measurement it has to be ensured that
the frame will be relayed on all linecards simultaneously. The
results of the validation are comparable to the results of the
discussed approach (see table I) apart from the additional delay
of the duplication switch (approx. 9µs). A further validation
improvement can be an Ethernet tap, which is used in [6] and
has a delay less than 10ns.

2) Mathematical Framework: Using the mathematical
framework of TTEthernet shown in [31], the approach pre-
sented in this paper will be verified again. This framework
allows calculating latency, bandwidth and jitter independently
of the hardware implementation. To calculate the switch
latency equation 3 is used:

tL = tWD ∗ lW + ns ∗ lF ∗ tb +

ns∑
i=1

tSDi
(3)

The total latency tL consists of the wire delay tWD ∗ lW
for all wires between sender and receiver. The time for the
message transmission for each switch ns ∗ lF ∗ tb (ns number
of switches, lF length of a frame and tb propagation delay)
and the scheduled delays in each switch

∑ns

i=1 tSDi
. The delay

tSDi
can be calculated as the difference of send point in time

and receive point in time for the switch. Since the wires in
the experiment were very short (0.5m) the signal propagation
delay tWD ∗ lW is insignificant (10 ns

m ∗ 0.5 m = 5ns).
Equation 4 and 5 provide the frame propagation delay for

maximum and minimum payload.

tFPDmax
= lF ∗ tb (4)

= 1518byte ∗ 8
bit

byte
∗ 0.01

µs

bit
= 121.44µs

tFPDmin = 64byte ∗ 8
bit

byte
∗ 0.01

µs

bit
(5)

= 5.12µs

The last part for the equation is the sum of relay delays of
all switches

∑ns

i=1 tSDi
. It only consists of the delay that is

based on the schedule of our switch under test tSD0 . In our
experiment it is 350µs. According to equation 3 the switch
latency can be calculated:

tLmax
= tWD ∗ lW + ns ∗ lF ∗ tb +

ns∑
i=1

tSDi
(6)

= 10
ns

m
∗ 0.5m+ 1 ∗ 121.44µs+ 350µs

= 471.445µs

tLmin
= 10

ns

m
∗ 0.5m+ 1 ∗ 5.12µs+ 350µs (7)

= 355.125µs

As expected a linear dependency on the frame length can
be seen. The results of the mathematical model comply with
the measured latency (see table I).

To give an overview of the realized results table I shows
the measured latencies for a minimal The difference of 9µs
relies on the used duplication switch.

measurement hardware mathematical
approach sniffing model

min. framelength 355µs 364µs 355.125µs
max. framelength 471µs 479µs 471.445µs

TABLE I
ALL VALIDATION RESULTS IN COMPARISON

VI. MEASUREMENT RESULTS

The results of the measurement based on the setup given
in figure 4 will now be presented. First, the effect of the
employed TTEthernet schedule on message transmission is
depicted. Second, the TTEthernet switch is compared to a
standard consumer components-off-the-shelf (COTS) switch,
which does not provide priority-driven transmission.



Fig. 7. Minimum and maximum latency for a 64byte frame with different
delays in schedule.

A. Influence of Scheduling

The main variable for the latency of a time-triggered mes-
sage is the schedule of the TTEthernet switch. The schedule
determines when a time-triggered message is forwarded. To
demonstrate the impact of the schedule on the latency, time-
triggered messages with minimum frame size are transferred
while the switch is configured with schedules with relay delays
between 10µs and 350µs.

Figure 7 shows the minimum and maximum latency for a
measurement of 100 frames. In general, the scheduled delay
has a linear effect on the latency. Jitter is within our expected
range of 10µs.

For short relay delays, the relaying is not reliable anymore.
Since the synchronization has a finite precision, the sender
misses its deadline and the frame is forwarded in the next
cycle. For the schedule with 25µs, the deadline is reached
reliably. The schedule with 15µs is a turning point where the
deadline is only reached most of the time. For smaller relay
delays, the deadline is always missed.

For the turning point (15µs), packet loss is experienced.
Packet loss happens when a frame misses and the following
frame reaches the deadline. Then the following frame over-
writes the message in the buffer and only the new frame is
relayed. For the results in this paper, the switch was configured
to relay frames tolerantly. With an acceptance window for
incoming time-triggered frames the switch may be configured
to drop messages that arrive too late to meet their deadline.

B. Comparing a Standard and a TTEthernet Switch

TTEthernet provides a reliable transmission with predictable
latency for critical traffic. The behavior of a TTEthernet
switch is compared to a standard COTS switch when the link
utilization of best-effort traffic increases. In this measurement,
the transmission of critical traffic is accomplished with 100
frames for each measurement, 64 byte frame size and a 25µs
relay delay. The link utilization is applied with full size best-

Fig. 8. Latency comparison 100Mbit COTS switch and TTEthernet switch,
time-triggered traffic with minimum payload and varying best-effort link
utilization.

effort frames. Figure 8 presents the minimum, maximum and
the average latency as a function of link utilization.

The results for the TTEthernet switch remain constant,
whereas the maximal values at the COTS switch reach 126µs
with 10% utilization. The COTS switch queues frames in-
dependently of the message priority. Critical traffic will be
delayed for the amount of a full size best-effort frame duration,
which is 122µs. Since the COTS switch does not provide
priority-driven transmission of critical traffic, the probability
of collisions on outgoing linecards increases with the link
utilization. This effect can be seen in COTS average latency
plotted in figure 8, which increases in dependency of link
utilization.

Figure 9 shows the latency distribution for the TTEthernet
and COTS switch. This analysis reveals the characteristic dif-
ferences of the switches. The decision whether the forwarding
matches the requirements of the application can be supported
by latency distribution graphs.

For the TTEthernet switch, the time-triggered messages
latency is within the expected precision. Due to queuing, the
latency of the COTS switch is widely distributed and therefore
a predictable message transmission of critical traffic cannot be
derived.

VII. CONCLUSION & OUTLOOK

In this paper, an approach to measure end-to-end latency of
time triggered Ether-Networks with off-the-shelf-components
was presented for costs less than 500$. This lightweight syn-
chronized packet generation tool for analyzing and verifying
RT-networks is realized by a RT Linux Kernel, modified device
drivers and an implementation of a time-triggered Ethernet
protocol stack, developed by TTTech.

The measured end-to-end latency of TT-Ether-Networks
under test depended on the used system-cycle, hardware driver
configuration and the frame size. The resulting hardware and



Fig. 9. Latency distribution comparison 100Mbit COTS switch and TTEth-
ernet switch.

driver delay had to be subtracted from the measured latency
in order to be precise.

For verification purpose, a compatible test setup with a
hardware sniffer and a mathematical framework was applied.
The results of the approach discussed in this paper confirm to
the direct measurements performed in hardware, as well as to
values calculated from the framework.

The presented measurement results of TTEthernet and
COTS hardware clearly demonstrate the suitability of the
provided approach for evaluating of time-triggered Ether-
Networks.

Generally, the results promise exact end-to-end latency
measurement, jitter measurement can only be realized by using
frame sizes below 128 byte. Furthermore, non-maskable in-
terrupts can corrupt this measurement approach, because they
have to be executed immediately in critical and unfrequented
situations like parity error on the memory bus occurs.

In future work, we will validate our approach using different
hardware and hope to overcome the issues imposed by the
driver and network chipset. Hardware with a specifically low
receive and copy delay should be favored. Furthermore, we
plan to adapt our approach to an ARM9-based microprocessor
without operating system, which provides a CPU counter
register, too. Due to control of all I/O and ISR executions,
a higher precision should be achievable from this approach.

VIII. ACKNOWLEDGMENT

The authors would like to thank Andreas Büker and Fujitsu
Technology Solutions GmbH for supporting the validation
with their hardware and their knowledge of Ethernet measure-
ment.

REFERENCES

[1] W. Steiner, “TTEthernet Specification,” TTTech Computertechnik AG,
Nov. 2008. [Online]. Available: http://www.tttech.com

[2] TTTech Computertechnik AG, “,” Wien. [Online]. Available: http:
//www.tttech.com

[3] Honeywell International. [Online]. Available: http://www.honeywell.
com

[4] SAE - AS-2D Time Triggered Systems and Architecture Committee,
“Time-Triggered Ethernet (AS 6802),” 2009. [Online]. Available:
http://www.sae.org

[5] Ixia, “Ixia - 1600T Traffic Generator / Performance Analyzer.” [Online].
Available: http://www.ixiacom.com

[6] P. Ferrari, A. Flammini, D. Marioli, and A. Taroni, “A Distributed
Instrument for Performance Analysis of Real-Time Ethernet Networks,”
Industrial Informatics, IEEE Transactions on, vol. 4, no. 1, pp. 16–25,
Feb. 2008.

[7] J. Loeser and H. Haertig, “Low-latency hard real-time communication
over switched Ethernet,” in Real-Time Systems, 2004. ECRTS 2004.
Proceedings. 16th Euromicro Conference on, Jun. 2004, pp. 13–22.

[8] R. A. de M. Valentim, A. H. F. Morais, G. B. Brandão, and A. M. G.
Guerreiro, “A performance analysis of the Ethernet nets for applications
in real-time: IEEE 802.3 and 802.3 1 Q,” in 6th IEEE International
Conference on Industrial Informatics, 2008. INDIN 2008., Jul. 2008,
pp. 956–961.

[9] Wireshark, 2010. [Online]. Available: http://www.wireshark.org
[10] I. Schafer and M. Felser, “Precision of ethernet measurements based

on software tools,” in IEEE Conference on Emerging Technologies and
Factory Automation, 2007. ETFA., Sep. 2007, pp. 510–515.

[11] J. K. Strosnider, T. Marchok, and J. Lehoczky, “Advanced real-time
scheduling using the IEEE 802.5 token ring,” in Real-Time Systems
Symposium, 1988., Proceedings., Dec. 1988, pp. 42–52.

[12] L. Yao and W. Zhao, “Performance of an extended IEEE 802.5 protocol
in hard real-time systems,” in INFOCOM ’91. Proceedings. Tenth
Annual Joint Conference of the IEEE Computer and Communications
Societies. Networking in the 90s., IEEE, Apr. 1991, pp. 469–478.

[13] A. P. Jayasumana and G. G. Jayasumana, “On the use of the IEEE
802.4 token bus in distributed real-time control systems,” Industrial
Electronics, IEEE Transactions on, vol. 36, no. 3, pp. 391–397, Aug.
1989.

[14] EtherCAT Technology Group, “EtherCAT.” [Online]. Available: http:
//www.ethercat.org

[15] Aeronautical Radio Incorporated, “Aircraft Data Network,” ARINC,
Annapolis, Maryland, Standard 664, 2002.

[16] International Organization for Standardization, “Road vehicles – Con-
troller area network (CAN) - Part 4: Time-triggered communication,”
ISO, Genf, ISO 11898-4:2004, 2004.

[17] FlexRay Consortium, “Protocol Specification,” FlexRay Consortium,
Stuttgart, Specification 2.1, Dec. 2005.

[18] PROFIBUS & PROFINET International, “Profinet,” Karlsruhe. [Online].
Available: http://www.profibus.com/pn/

[19] SynqNet Interest Group, “Synqnet.” [Online]. Available: http://www.
synqnet.org/

[20] T. Ts’o, D. Hart, and J. Kacur, “RT-Kernel Wiki,” 2010. [Online].
Available: https://rt.wiki.kernel.org/index.php/Main Page

[21] D. Abbot, Linux for embedded and real-time applications - 2nd Edition.
Butterworth Heinemann, May 2006.

[22] RTAI Team, “RTAI - the RealTime Application Interface for Linux
from DIAPM,” 2010. [Online]. Available: http://www.rtai.org

[23] Xenomai, “Real-Time Framework for Linux,” 2010. [Online]. Available:
http://www.xenomai.org

[24] K. Yaghmour, J. Masters, G. Ben-Yoseff, and P. Gerum, Building
Embedded Linux Systems - 2nd Edition. O’Reilly Media, Inc., Aug.
2008.

[25] J. Corbet, A. Rubini, and G. Kroah-Hartman, Linux Device Drivers,
Third Edition. O’Reilly Media, Inc., 2005.

[26] Intel, “Intel 64 and IA-32 Architectures Software Developer’s Manual,”
Intel, Tech. Rep., Sep. 2010.

[27] Jon Masters, “SMI Detector - A simple module for detecting
System Management Interrupts,” 2009. [Online]. Available: http:
//lkml.org/lkml/2009/4/2/426

[28] IEI Technology Corp. [Online]. Available: http://www.ieiworld.com/
[29] S. Bradner and J. McQuaid, “Benchmarking Methodology for Network

Interconnect Devices,” IETF, RFC 2544, Mar. 1999.
[30] Realtek Semiconductor Corp., “Integrated Gigabit Ethernet Controller

For PCI-Express Applications - Registers Datasheet,” Realtek Semi-
conductor Corp., Hsinchu, Taiwan, Tech. Rep., Apr. 2006.

[31] T. Steinbach, F. Korf, and T. C. Schmidt, “Comparing Time-Triggered
Ethernet with FlexRay: An Evaluation of Competing Approaches to
Real-time for In-Vehicle Networks,” in 8th IEEE Intern. Workshop on
Factory Communication Systems. Piscataway, New Jersey: IEEE Press,
May 2010, pp. 199–202.


