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ABSTRACT
In modern cars the communication infrastructure consists
of different application specific bus systems that are inter-
connected with each other. Due to the growing complexity
of the communication infrastructure, the corresponding tim-
ing analysis at system level is currently a hot topic in the
automotive industry.

FlexRay is a state-of-the-art fieldbus for cars. While Flex-
Ray simulations below system level are already established
in automotive tool chains, FlexRay system level simulation
is not yet common. This paper focuses on simulation-based
timing analyses for FlexRay communication. Based on dif-
ferent scenarios the practical relevance is shown. The per-
formance results promise that our simulation approach is a
good building block for the simulation of heterogeneous com-
munication consisting of several bus systems and technolo-
gies. An evaluation of the simulation results in comparison
with the CANoe network simulator proves the conformance
of the implementation with the FlexRay specification.

Categories and Subject Descriptors
I.6.5 [Simulation and Modeling]: Model Development;
C.2.2 [Computer-Communication Networks]: Network
Protocols—FlexRay; C.4 [Performance of Systems]: Per-
formance attributes

General Terms
Design, Performance, Reliability

Keywords
FlexRay, System Level Simulation, Timing Analysis, OM-
NeT++

1. INTRODUCTION
The simulation of diverse fieldbus designs and configura-

tions is a key challenge in automotive development. Cur-
rently most commercial and open source simulation solu-
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tions for fieldbuses such as FlexRay [2] or CAN [7] focus
on the accurate simulation of the hardware and physical
communication layer to allow for a precise analysis of var-
ious network metrics. These simulations are suitable when
the focus of interest is only on one single communication
technology. When a large system with several buses is anal-
ysed, a more abstract view is required to visualise the sys-
tems behaviour and timing with reasonable simulation ef-
fort. Especially when the system uses multiple communi-
cation technologies and domains that are interconnected, a
careful analysis of the influences of gateways, that inter-
change messages beyond the borders of a technology or do-
main, is indispensable. New automotive architectures, such
as Ethernet-based in-car backbones [10] consolidate state-of-
the-art technologies and cannot be simulated in conventional
simulation environments. Thus, conventional toolchains are
inappropriate for the evaluation of next generation in-car
network architectures.

The FlexRay protocol [2] is a time-triggered protocol.
During a communication cycle the static segment provides
deterministic bus access according to a coordinated time di-
vision multiple access (TDMA) scheme. Moreover the dy-
namic segment supports event-triggered strictly prioritised
communication. This work contributes a simulation model
for FlexRay based automotive fieldbuses that abstracts from
implementation and hardware details. To the best of our
knowledge it is the first open source FlexRay simulation
model that focuses on data link layer (layer 2) according
to the OSI model. Many layer 2 related configuration pa-
rameters defined in the FlexRay standard are used in the
simulation model. This tight connection between simulation
and hardware parameters realises a smooth transfer from the
model to the implementation.

Our simulation model is designed to be compatible with
other simulation models such as Ethernet-AVB [6] or TT-
Ethernet [9] to simulate gateway and migration concepts.
We prove the validity of the simulation results obtained from
our model by comparing results of reference networks in OM-
NeT++ and CANoe.

The evaluation of the simulation model shows two typical
applications: The simulation model can be used to detect
protocol violations in the static segment of FlexRay during
early design phases. These errors might be caused by proto-
col violations of applications or insufficient hardware, such
as inaccurate oscillators. Furthermore, our simulation can
be used to detect end-to-end delay problems in the dynamic
segment, which might be caused by insufficient bandwidth
or prioritisation problems.
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Figure 1: The FlexRay communication cycle

The remainder of the paper is organised as follows: In
Section 2 the background on the FlexRay protocol and re-
lated work is given. Section 3 shows the concept behind the
simulation model and its architecture. The evaluation of the
simulation model and the discussion of the results of typical
use-cases is shown in Section 4. Finally Section 5 concludes
and gives an outlook.

2. BACKGROUND & RELATED WORK

2.1 FlexRay
FlexRay is a communication protocol designed as a de-

pendable automotive bus. It offers higher bandwidth than
preceding protocols such as CAN or LIN. It is suitable for
the communication of safety critical applications with high
timing requirements concerning latency and jitter. Further-
more, it offers two different methods to transmit frames: A
coordinated time division multiple access strategy is used
to send statically scheduled messages. Prioritised event-
triggered communication is supported by a so-called mini-
slot protocol. Due to the TDMA approach each node has
its own clock that must be precisely synchronised. The local
clocks are synchronised using offset- and rate-correction in
specific time slots of the static segment.

2.1.1 Communication Cycle
The communication in a FlexRay system is divided into

continuously repeated cycles. A cycle may consist of up
to four different elements: the static segment, the dynamic
segment, the symbol window and the network idle time (see
Fig. 1). Static segment and network idle time are required
in every cycle while dynamic segment and symbol window
are optional. The duration of each element is configured
before startup and cannot be changed during operation.

According to TDMA the static segment is divided into
multiple slots. Each slot has the same fixed duration. A slot
will be assigned to exactly one node. When the beginning
of a slot is reached, the node transmits the corresponding
frame.

In the dynamic segment a dynamic mini-slot-based scheme
comes to use. Similar to the static segment, it is divided in
multiple mini-slots, where each mini-slot can be assigned to
exactly one node.

As soon as a mini-slot is reached, the node can transmit its
dynamic frame. If the node transmit a frame, the mini-slot
is extended according to the length of the frame. Otherwise

the size of the mini-slot will is not changed. Only the end of
the dynamic segment restricts the end of the transmission. If
a node sends a frame and extends its mini-slot, the beginning
of consecutive slots is delayed.

The symbol window offers the possibility to send signals,
which are used within the startup of the network, for exam-
ple to avoid collisions.

Within the network idle time there is no communication
on the medium. During this time, nodes perform different
tasks and calculate clock correction. The offset-correction is
applied at the end of this segment.

2.1.2 Synchronisation
For synchronisation up to 15 nodes can be defined as re-

dundant sync nodes. Such a node transmits a sync frame
in each cycle, which is used for the clock synchronisation
process. The local time of a FlexRay node is represented by
cycles, macroticks and microticks. A macrotick consists of a
number of microticks and a cycle of a number of macroticks.
A microtick is standardised as 12.5 ns, 25 ns or 50 ns.

The rate correction of the local clock changes the number
of microticks per macroticks. The offset correction of the
local clock adjusts the duration of the network idle time.

For the calculation of both correction values a fault-tolerant
midpoint algorithm (FTM) is used [2]. During a cycle, data
concerning the current – and the expected – arrival time of
each sync frame will be stored. Based on the number of
entries up to two of the smallest and largest values will be
discarded. Afterwards the largest and the smallest values
are averaged and the floor function is applied.

The offset-correction value is calculated in every cycle but
the clock offset-correction is only executed in odd cycles. For
the calculation, the deviation values of the current cycle are
processed and forwarded to the FTM algorithm. The result
of the algorithm reflects the offset-correction value.

The rate-correction value is calculated in the odd cycles
but it uses the values of two consecutive cycles. The differ-
ences between the values of both cycles is stored and for-
warded to the FTM algorithm. The result is added to the
previous rate-correction value. The value is valid for the
next two cycles until the next rate-correction starts.

2.2 Related Work
Lauer et. al. [5] proposed discrete event based simulation,

especially for design decisions at early stages of the develop-
ment process. The authors argue that discrete simulation is
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Figure 2: OMNeT++ Components of the FlexRay
Simulation Model

in particular useful for sensitivity analyses from an average-
case perspective. The average-case covers the aspects during
normal system operation. The results of the timing analysis
show the significant impact of clock drift on communication
latency and jitter.

In general, discrete FlexRay models are rare: CANoe [12]
is a well known commercial automotive network simulation
environment provided by Vector Informatik GmbH. Besides
the software simulation CANoe can also be applied for clus-
ter simulation to test physically attached nodes.

There are examples for the simulation of fieldbus proto-
cols in the OMNeT++ event-based simulation framework.
Frauenhofer FOKUS introduced a FIELDBUS Framework
for OMNeT++, but the model that was intended as basis
for the simulation of ControlNet and DeviceNet never be-
came stable [3].

Approaches like the ones given by Cheikhwafa et. al. [1]
or Rolfs et. al. [8] use extensive abstraction to realise a per-
formant simulation-based system analysis. The simulation
model provided in this paper is based on layer 2 to allow for
a more detailed timing analysis of the FlexRay protocol.

Graf et. al. introduced an abstract model for the analysis
of automotive networks using virtual components [4]. Their
concept bases on an actor concept with abstract simulation
models at system-level. In an experimental setup it was
shown how the simulation can be used to optimise param-
eters of the communication infrastructure to reduce round-
trip delays.

3. CONCEPT, ARCHITECTURE
& IMPLEMENTATION DETAILS

The proposed simulation model includes the communica-
tion within the static and the dynamic segment. The net-
work idle time is used to calculate the correction values of
the synchronisation process and to adjust the duration of
the cycle in the simulation. At the start of a simulation it is
assumed that all nodes of the network are already connected
and synchronised with each other. Since the startup is not
simulated the implementation of the symbol window is not
required but is subject of future work.

3.1 Concept & Architecture

FlexRay Model
Each FlexRay node and the bus will be modeled as OM-
NeT++ module (see Figure 2). The bus module represents
the physical structure of the FlexRay bus, such as two Flex-

Ray channels. Bus access will be modelled by OMNeT++
messages. Static and dynamic frames will be sent from the
transmitter node to the bus module. The bus module then
sends the message to all other connected nodes.

The simulation implements time-triggered scheduling dur-
ing the static segment of FlexRay. Each node is aware of the
slot and corresponding frameID of all FlexRay frames that
it was assigned to based on its configuration. When the slot
is reached, the node sends a message with the simulation
relevant information to the bus module. The bus module
forwards the message to all nodes that are connected to the
corresponding communication channel. Each FlexRay node
contains checkers that report collisions, missing frames, and
time violations.

In the dynamic segment the allocation of the slots is han-
dled similar to the static segment. One exception is a node
will not use its mini-slots during all cycles. If it is unused
the bus stays idle during this slot. Utilised mini-slots are
allowed to be extended over the configured duration. This
results in a later transmission time of messages that will be
sent later in the cycle (see Fig. 1). The additional delay is
directly related to the variable size of the dynamic frame,
that is allowed changing over multiple cycles.

Each FlexRay node has a local clock. To support the time-
triggered approach of the static segment, these clocks must
be synchronised according to the protocol. At the beginning
of the network idle time of each odd cycle, the calculation of
the offset and rate-correction values is performed. Depend-
ing on the result of the offset correction, the duration of the
idle time is lengthened or shortened. The rate-correction will
be used at the start of the next cycle to adjust the number
of microticks per cycle.

Oscillator Model
A very important and at the same time very critical element
of the simulation is the model of the oscillator. It is essential
for the synchronisation process and has a huge influence on
the simulation performance. With a precise model, it is
possible to achieve a high accuracy in the simulation results
even though the physical layer itself is not simulated.

The accuracy of oscillators is the most important attribute.
Each of them has a certain inaccuracy called clock drift [11].
The drift of the clock may occur due to different reasons. For
example, due to the physical architecture of the oscillator or
environmental conditions like temperature changes. These
drifts have a significant influence on the synchronisation pro-
cess of the FlexRay nodes and must therefore be carefully
included in the oscillator model.

To create a very accurate model of an oscillator it would
be necessary to simulate each tick as a separate event. This
approach would generate a huge amount of events and the
simulation time would be slowed down significantly. Thus,
it is not suitable to effectively simulate a network.

To provide a fast oscillator model, several ticks between
two events are combined. To simulate the clock drift a con-
stant drift value is used for a certain interval. The duration
between the current time and the following events can be
calculated as shown in equation 1:

t′ = t+ δ ∗ (∆tTick + ∆tDrift) (1)

where t′ represents the simulation time of an upcoming event.
The time for the remaining ticks is added to the current sim-
ulation time t. It is calculated using the number of ticks (δ),



Figure 3: Structure of the FlexRay node

the fixed time for one tick (∆tTick) and the current drift
value (∆tDrift).

The same oscillator module can be used as well for simula-
tions of other time-triggered protocols such as time-triggered
Ethernet [9]. Based on a shared oscillator module we will
then be able to simulate the complete communication matrix
of one car or provide technology independent synchronisa-
tion services.

3.2 Implementation Details
The simulation consists of two main modules - one for the

node and one for the bus topology. The node is divided in
four different submodules according to their tasks: FRApp,
FRScheduler, FRSync and FRPort (see Figure 3).

For traffic generators the FRApp submodule creates all
frames that should be sent in the static or the dynamic seg-
ment and initialises the transmission. If simulation will be
used for early application software tests, the application soft-
ware will be plugged into FRApp.

The FRScheduler submodule implements the organisation
of the communication cycle and the oscillator model. At the
beginning of each cycle, the oscillator model provides the
new clock drift for each node. Afterwards all already sched-
uled events, and the current value of the rate-correction that
was calculated during the idle time of the previous cycle,
have to be adjusted to the new drift.

gdMacrotick = microPerMacro ∗ currentT ick (2)

To apply the clock drift to future events the duration of
the macrotick will be adjusted as given in equation 2. The
variable microPerMacro defines the number of microticks
per macrotick. It depends on the configured values for the
network and the current value of the rate-correction, which
is added to the complete cycle. currentT ick represents the
duration of one microtick including the actual drift.

The number of microticks per cycle that is adjusted with
the rate-correction is distributed over all macroticks. This
approach is different from the corresponding concept of the
FlexRay-specification, where the microticks are added to or
removed from several macroticks. Figure 4 shows an exam-
ple where only one additional microtick is distributed over
the cycle. This difference does not influence the timing be-
haviour on the data link layer, which is the focus of our
simulation model. Our rate-correction model significantly
reduces the complexity of the simulation.

cycle n

cycle n

cycle n+1

cycle n+1

Macrotick Additional microtick

Specification

Model
t

cycletimecycletime

Figure 4: Distribution of an additional microtick

The FRSync submodule is responsible for clock synchro-
nisation according to the FTM-algorithm described in Sec-
tion 2.1.2. Additionally, it tracks the deviation of incoming
sync frames and selects the values that are passed to the
FTM. FRFrame is the message object for FlexRay frames.
It stores FlexRay-specific parameters such as the frameID or
the syncFrameIndicator. If the simulation is used for early
application software tests, the payload is stored in this mes-
sage object as well. Otherwise, the payload can be omitted
to speed up the simulation.

4. EVALUATION & RESULTS
To validate the correctness of the simulation results, the

OMNeT++ model is compared with the software tool CANoe
and two typical use-cases are shown.

4.1 Comparison of Latency Results:
OMNeT++ Simulation Model and CANoe

To evaluate the FlexRay simulation model we compared
the results of a reference network in OMNeT++ and CANoe
[12]. CANoe is a well-established commercial network sim-
ulator that is precisely configurable. We evaluated both,
the static and the dynamic segment of the FlexRay com-
munication cycle by comparing the CANoe traces with the
OMNeT++ event log.

Our reference network consists of three nodes. All Flex-
Ray parameters – such as the number of slots, the size of
the static and dynamic segment, duration of micro- and
macroticks – are equally configured in both setups. The
cycle length is set to 5 ms, all nodes send in the static and
the dynamic segment. Our FlexRay model offers less con-
figuration options than CANoe, because of the higher ab-
straction. These additional parameters focus on layer 1 and
2 and influence the frame size or the transmission time.

To each node a slot in the static segment is assigned, in
which it sends a static frame. Within the dynamic segment,
node 1 has the highest priority, but sends a message only in
every second cycle. Node 2 sends in the second slot in every
cycle. The third node, which has the lowest priority, tries to
send in the end of the cycle. To ensure that a comparison
between CANoe and OMNeT++ is possible, all messages
have the same size in of the dynamic segment.

For the comparison we turned off the clock drift in our
FlexRay model as well as in the CANoe simulation. This
ensures that we validate only the model of the FlexRay com-
munication and not the clock model. As the model behind
the clock in CANoe is not accessible for us, this is the only
possibility to ensure comparable results.

The results of our simulation over 200 cycles show the
same behaviour in CANoe and OMNeT++. All frames in
the static segment are scheduled, while in the dynamic seg-



# nodes # sync nodes channel secSim/secCPU

10 10 single ∼0.96
20 15 single ∼0.58
30 15 single ∼0.45
10 10 dual ∼0.62
20 15 dual ∼0.32

Table 1: CPU-time for different network structures

ment the last frame is repressed when both previous nodes
access the bus. When comparing the latency between CANoe
and the FlexRay model we have observed a difference of ap-
proximatly 100 ns that is below the precision of the trace
in CANoe. We attribute the time difference to the more
detailed configuration options of CANoe.

The validation allows assuming correct simulation results
of the model according to the abstraction level.

4.2 Performance Evaluation
To get an overview of the performance of the FlexRay

simulation, the used CPU-time for different networks was
analysed to compare them with each other. For the test
we simulate three networks, which operate only on a single
channel, and two networks, which send frames on both chan-
nels. To show the scalability of our simulation the dynamic
segment is omitted. This is acceptable since the simulation
time to transmit a message is in the same magnitude for both
segments. All networks have a similar topology. In more de-
tail: The amount of static slots is equal to the amount of
nodes. Within the static segment every node sends one mes-
sage. All other parameters such as the duration of a slot, a
macrotick or the network idle time are equal.

Table 1 lists the results for all networks on a standard
PC system. Each network ran for 60 seconds. The memory
usage of each network was between 31 and 32 MB and is
therefore not further considered.

The parameters number of macroticks per slot, duration
of a macrotick and number of unused slots have a significant
influence on the required CPU-time. In the performance
evaluations given above we chose these values in such a way,
that the required CPU-time is high. For example, in the
simulation setup shown in Table 1 a slot takes 40 µs. If
this value is changed to 200 µs for the last simulation, the
proportion of secSim to secCPU changes from ∼0.32 to ∼1.67
simulation seconds per CPU second.

The performance evaluation shows that the model offers
sufficient performance for the simulation of typical automo-
tive networks.

4.3 Timing Analyses in the Static Segment
One objective of the FlexRay simulation is to detect tim-

ing errors and incorrect behaviour caused by the network
configuration or insufficient hardware. Typical detectable
errors are:

• Violations of TDMA timing requirements (e.g. the
transmission of a frame starts before the corresponding
slot begins)

• Simultaneous transmissions in the same slot and chan-
nel

• Too many sync nodes

• Frames, received in the wrong slot
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Figure 5: Latency of Frames with different IDs in
the dynamic Segment over time

Network parameters such as the assignment of slots to mes-
sages and nodes have to be done in early design states. Erro-
neous configurations that are detected during bring up phase
often require significant modifications. Thus, the simulation-
based analysis of these error sources is of practical relevance.

Within the configuration of a FlexRay bus the action point
offset, which is related to the beginning of a slot, defines the
time window, in which a node may start the transmission
of a frame. If the accuracy of the oscillator of a node is in-
sufficient, the simulation detects these violations of TDMA
requirements. Hence, our simulation approach can be used
to adjust FlexRay configuration parameters such as the ac-
tion point offset. Vice versa the accuracy of all oscillators
can be validated against FlexRay configuration parameters
in the early design phases, before the first prototype is avail-
able.

4.4 Latency Analysis of dynamic transmission
The latency analysis of the dynamic segment is demon-

strated based on a small network. Four nodes send in a
dynamic segment of 10 minislots. The corresponding IDs of
the dynamic segment are 11 to 20, due to the 10 slots of
the static segment. The four active nodes send their mes-
sages in the slots 11, 15, 17 and 19. Each node sends its
messages with a randomised size such that the transmission
will require 1 to 3 minislots. The cycle time is configured as
3.24 ms. The arrival time of each message type is recorded
during the simulation of 3100 FlexRay cycles.

Figure 5 shows for each node the delay to get access to
the bus. The optimal time between two accesses is 3.24 ms,
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Figure 6: Latency Distribution of Frames with dif-
ferent IDs in the dynamic Segment

which is the cycle time. This can be guaranteed for the
first two nodes. If node 3 and 4 – which are assigned to
minislot 15 and 17 – try to transmit a message that requires
3 minislots during the same cycle, node 4 cannot transmit
its message. The majority of messages of node 4 – which is
assigned to ID 19 – have a high latency which implies that
various messages were not sent. The node can never transfer
a message that requires 3 minislots and it may take up to
over 20 cycles to get bus access.

Figure 6 shows the interarrival time distribution. In over
92 % of the cycles the node assigned to the slot 17 was able
to send its message. At the latest after approximately 10 ms
the node got access. Just in a total of 6 % of the cases a
frame with ID 19 was sent in two consecutive cycles.

5. CONCLUSION & OUTLOOK
This paper presents an open source FlexRay simulation

model that focuses on data link layer (layer 2) according to
the OSI model. It can be used for different timing analyses
at system level as shown exemplarily for protocol violations
and inadequate oscillators of local clocks.

Simulation gains importance due to the increasing com-
plexity of modern car networks. The FlexRay simulation
offers appropriate performance and can be used for large
systems with a reasonable amount of time.

A modern car communication matrix consists of a num-
ber of different technologies, such as Ethernet, CAN and
LIN, each with different properties. As shown, the FlexRay
simulation is well prepared to run in parallel to CAN and
real-time Ethernet simulation models. In future work we
will merge these components. Based on such combined sim-
ulation environments and corresponding gateway designs,
complex car matrices can be analysed. A simulation of an
in-car network consists of 5 to 10 nearly independent sub-
systems that are coupled by gateways. This provides a good
chance to reduce simulation time by parallel execution.

The implementation of the FlexRay model is currently
prepared for OpenSource publication. A beta release can be
found on the project webpage (http://core.informatik.
haw-hamburg.de).
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