
Efficient Automotive Grid Maps using a Sensor Ray based Refinement
Process

Ruben Jungnickel1, Michael Köhler1 and Franz Korf2

Abstract— The occupancy grid mapping technique is widely
used for environmental mapping of moving vehicles. Occupancy
grid maps with fixed cell size have been extended using the
quadtree implementation with adaptive cell size. Adaptive grid
maps have proven to be more resource efficient than fixed cell
size grid maps. Dynamic cell sizes introduce the necessity of
a split and merge process to trigger the refinement of grid
cells. This paper presents a novel ray-based refinement process
in order to choose the appropriate resolution for the sensor
observation. Based on measurement conflicts some approaches
use an iterative refinement process until all conflicts are solved.
In contrast this paper presents an non-iterative approach
based on the sensor resolution. Using the measurement data
efficiently we propose an algorithm, which solves the problem
of partially free cells in an adaptive grid map. The proposed
algorithm is compared against other widely used algorithms
and methodologies.

Index Terms— Evidential Grid, Occupancy Grid Map,
quadtree, NDTree, sensor modelling

I. INTRODUCTION

Accurate environmental perception is a requirement for
advanced driver assistant systems (ADAS) and mandatory
for highly automated driving (HAD). In order to further
improve environmental perception systems it is necessary
to provide accurate and comprehensive information of the
static environment. As a modelling technique of the static
environment, the occupancy grid framework proposed in
[1] is widely used and has been applied successfully to
multiple systems [2] [3]. The basic idea of occupancy grid
mapping is to model the environment as a set of discrete
cells containing probabilities of the presence (occupancy)
or absence (freeness) of an object. The original version
of occupancy grid mapping uses a fixed cell size. This
leads to a conflict between a high accurate environment
representation and memory (computational) efficiency. To
avoid this trade-off, tree-based grids provide dynamic cell
sizes. Tree data structures have been shown to reduce the
memory footprint by a factor of ten or more [4]. Tree-
based grids (like quadtrees) enable the user to increase (split)
or decrease (merge) the resolution of a cell using its tree
structure. They can be seen as an optimization technique
to overcome the challenging demand of memory in a high
resolution map or for mapping large outdoor environments.

1Ruben Jungnickel and Michael Köhler are with Ibeo
Automotive Systems GmbH, System Development, 22143
Hamburg, Germany ruben.jungnickel@ibeo-as.com
michael.koehler@ibeo-as.com

2Franz Korf is with the Department of Computer Science, Ham-
burg University of Applied Sciences, 20099 Hamburg, Germany
franz.korf@haw-hamburg.de

A quadtree node is split by creating four equal sized sub
nodes halving the size of the parent node in each dimension.
The decision process of splitting and merging a cell is
crucial. The techniques used for splitting and merging will
control the amount of nodes and its resolution. Furthermore
they control the memory and computational resources main-
taining the map. This paper proposes a splitting process
triggered by the measurement resolution. The measurement
resolution is estimated by a inverse sensor model optimized
for LIDAR (LIght Detection And Ranging) sensors. In most
sensor models the free space area is bounded by unknown or
occupied area. To choose the cell size of these areas correctly,
a cell can be either treated as entirely free or occupied.
Cells, which are measured free only can be naively treated as
entirely free, where the major area of a cell is unknown [2]. A
modified conflict based approach [5] tends to split free areas.
In contrast the proposed algorithm splits cells at the free
space border only. Figure 1 shows where a partially free cell

Fig. 1: green grid cell is partially free and should be split
along free space border

should be split (right side). All corresponding cells along the
border of the free space area needs to be refined (left side).
This free space border (dashed blue line) is further described
as free space polygon. A novel two step cell refinement
process is proposed.

1) For the update of occupied cells the resolution of a
measurement is estimated and corresponding cells are
split until the requested resolution is reached.

2) Cells, which are not fully observed by a measurement
needs to be further refined (figure 1). These cells are
identified and split by calculating all intersecting cells
along the border of a estimated free space polygon.

The two step procedure solves the problem of partially free
cells by refining the crucial outline of a free space polygon
(step 2) and leave other cells at coarser level.



We show on basis of a practical evaluation that our cell
splitting approach is less CPU-intensive than an existing
conflict-based approach. Furthermore we show its efficiency
comparing the resulting map against its fixed resolution
counterpart.
Requirements to a mapping process often varies depending
on the use case. Two different use cases are considered:
• online mapping: The near environment of the vehicle

needs to be mapped. The map is used for ADAS and
only up to date measurement are of interest.

• offline mapping: The whole environment passing by the
mapping vehicle should be mapped. The map building
itself can be done offline. The resulting map can be used
for navigation where online measurement are matched
against the offline processed map.

While the offline mapping plays a role for robotic navigation
[6], the online mapping is much more important for ADAS
and HAD. In this paper we propose a cell ageing approach,
which enables the algorithm to meet the requirement for
online mapping. The cell ageing is an optional processing
step and can be disabled for the offline purpose.
This paper is structured as follows. Section II gives a
brief overview about the state of the art occupancy grid
mapping algorithm using adaptive cell resolution techniques.
In section III we present an inverse sensor model, which
is suitable for multilayer multiecho LIDAR. Section IV
introduces our adaptive Grid Map implementation in detail.
Experimental results and a practical evaluation are given in
section V. Finally in section VI conclusions and future work
are discussed.

II. STATE OF THE ART GRID MAP MODELLING

In this section an overview of current adaptive grid map
algorithm is given. Then, the Dempster Shafer theory (DST)
is introduced, which is needed for the evidential measure-
ment model and update process used in this paper.

A. Related Work

Over the last years, several adaptive grid mapping ap-
proaches have been studied. These approaches differ on the
crucial decision of the splitting and merging process. Einhorn
introduces the conflict-based splitting and merging process in
[2]. Conflicts of a measurement are estimated by employing
histograms for hits and misses iteratively. A χ2 test is a
statistical hypotheses test, which is used to identify cells that
need to be split.
Joubert [5] introduces some further improvements on the
base algorithm from [2]. This paper describes that using
measurements conflicts only could lead to major inaccuracies
where a cell is only partially free. Joubert extends the
technique proposed in [2] with an additional counter for the
unknown in order to solve the problem of partially free cells.
Unknown counters are incremented for cells, which are not
actively measurement free or occupied despite the cells are
in the measurement range.
In [3] so-called subpavings are calculated, which are sets of
aligned boxes to model a sensor ray. These multiple boxes

are used to update a quadtree occupancy grid map. The
quadtree is refined if a subpaving box has a higher resolution
than the corresponding cell of the quadtree. In his first
implementation the proposed algorithm takes exponential
execution time.
In [7] Schmid presents an automotive occupancy grid map
that is able to map 3D environments with a dynamic level
of detail. Schmid proposes multiple level of detail functions
that determine the cell size for different regions of the
environment application specific. He proposes a level of
detail function for landmark navigation and for pre-crash
systems. In contrast to this work Schmid chooses the cell size
application specific. In this paper we propose a measurement
specific cell size adoption.
In [8] Hornung contributes an efficient 3D mapping frame-
work based on octrees. For each cell measured free Hornung
creates a cell at the maximum measurement resolution. This
will create a ray of free measured cells at small cell size.
Afterwards child nodes are pruned if they have the same
occupancy state. In comparison to Hornung our 2D mapping
approach splits free cells only if the current scan will create
a free space border on the particular cell.
In this paper the ND-tree representation from [2] is used and
evaluated. In this term a quadtree is a 22-tree (N = 2, D = 2)
splitting a cell into four sub nodes. The ND-tree offers
an abstract modelling technique for further improvements
or evaluations with different D (dimension) or N (number
of sub nodes for each dimension). Conflict-based splitting
and merging proposed in [2] and [5] are computationally
challenging. All measurements are used to update free and
occupied counters stored in the map leaf nodes. Nodes
were split if the /chi2-test indicates a conflict between the
occupied and free counters. This leads to an iterative process
on the measurement data until all conflicts estimated by
the χ2 test are solved. For updating the free and occupied
counters the CPU-intensive ray-tracing process needs to be
executed multiple times. We propose a technique where the
measurement data is used to update the map at once.

B. Dempster Shafer Theory on Grid Maps

DST as evidential theory is used to update free and
occupied measurements independently [9]. Furthermore DST
is used to give an evidence about the correct cell resolution
in the proposed merge process. The DST is a mathematical
theory allowing the combinations of evidences [10]. An
evidence can be estimated by multiple sources and with
an own degree of belief. In DST all possible hypotheses
of a system are defined by a set Ω of mutually exclusive
propositions. We define for occupancy grid mapping the set
as Ω = {f, o} where f is the proposition for a free cell
and o for an occupied cell. The elements of the power set
2Ω = {∅, {f}, {o}, {f, o}} can be used to represent the
actual state of the system. For each X sources (like sensors)
DST supports a mass function mX : 2Ω 7→ [0, 1] that assigns
a belief mass to any element of the power set. The belief
mass function mX(F ) and mX(O) are used here to define
beliefs for the free and occupancy propositions (F = {f}



,O = {o}, U = {f, o} ), where X can be described as the
origin of the belief mass estimation.

III. INVERSE SENSOR MODEL
Map cell belief masses need to be updated with respects to

sensor measurement and its uncertainties. In this section an
inverse sensor model for 2D grids that combines map cell
belief masses and physical properties of a LIDAR sensor
is proposed. We employ classified LIDAR data to identify
echoes caused by ground (gnd), underdrivable objects (und),
noise (nos) or from a valid target(val). The classification
utilizes the vertical measurement resolution and is provided
by the LIDAR. Based on classified LIDAR data a ray-
based measurement model is developed, which provides
belief masses for a free and occupied measurement in a
so-called distance border (Db). Distance borders are used

Fig. 2: Four measurements measn create three distance
borders (Db1. . .Db3) for a single ray (topview)

to abstract the underlying sensor technology and can be
described as target area hit by any sensor measurement.
Please note that distance borders shape a bounded sensor
model similar to bounded error models contributed in [3]
by Langerwisch. Langerwisch pointed out that probabilistic
error models could suffer on a overconfidence at the ray
center. He compared bounded error sensor model against
a original grid map with probabilistic sensor model. In
contrast we propose a bounded evidential sensor model using
classified LIDAR measurements.

Field Description
φ horizontal measurement angle
dn measured distance
δdn distance uncertainty
δφ angular uncertainty

clasn set of classification results
mDbn (O) belief mass Dbn is occupied
mDbn (F ) belief mass area to Dbn is free

TABLE I: attributes of a distance border Dbn

A. Analyse Sensor Rays

As we are using multilayer LIDAR scanners the sen-
sor model is built depending on individual rays split-

ting measurement in horizontal bins. One ray S(φ) :=
{meas1,meas2, . . . ,measi} encompasses up to three scan
layers (see figure 3). Due to the capability of the sensor to
measure multiple distances (multi echo) a ray can contain
i = 9 distance measurements (measi) (for three echoes
per layer). Please note that the measurements meas2 and
meas3 are near to each other and create one distance
border Db2 with a higher probability of occupancy. For the
analysis of a single ray S(φ) we show three generic distance
borders (Dbn) depicted in figure 2. For each measurement
in the same ray S(φ) a new distance border is created.
The distance borders attributes are shown in table I. The
angular uncertainty δφ is mainly caused by the horizontal ray
divergence (for our sensor 0.12◦). The distance uncertainty
(δdn) depends on the sensor temperature and changes over
time [3]. For each distance border a belief mass function
calculates occupied belief mass mDbn(O) and mDbn(F ) for
the belief of freeness (see table II). The belief masses are
stored in its distance border.

Figure 3 shows a right hand view of a three layer

Fig. 3: vertical scan pattern of multilayer LIDAR on 1.6m
solid object at 60m and at 100m distance (side view)

(L1, L2, L3) LIDAR measurement. Consider the two solid
objects (obj1, obj2). Obj1 is measurable with all depicted
scan layers where obj2 in contrast is only measurable with
L1 and L2. Therefore measurements can be classified to be
possibly underdrivable und using the measured distance and
its scan layer. An object at a distance ≥ 100m, which is
measured only with L3 could be underdrivable.

B. Estimation of Belief Masses for Measurements

In the proposed sensor model, distance borders are used
to calculate belief masses. For the belief mass calculation
several measurement dependent considerations should be
made. A distance border could include measurements that
are: ground (gnd), underdrivable (und), noise (nos) or valid
(val). To incorporate all these kinds of measurement and
create a belief mass for each Dbn of a ray S(φ) we use the
equations of table II. Where the measS(Dbn) function re-
turn the number of measurements used to create the distance
border. The occupancy and free belief masses from table II
are staged in three different mass levels minOcc,minFree
lower level, occ, free mid level and maxOcc,maxFree
for the highest belief masses level. Measurements that were
likely to be overdrivable (gnd) are regarded as free space.
The area between the sensor and the gnd measured can be



mDbn (O) =


0 if Dbn.clas ∩ nos = Dbn.clas

α(φ)minOcc if Dbn.clas ∩ und = Dbn.clas

α(φ)maxOcc if measS(Dbn) > 1

α(φ)occ else

mDbn (F ) =


α(φ)maxFree if Dbn.clas ∩ gnd = Dbn.clas

0 if n > 1

α(φ)minFree if Db1.clas ∩ und = Db1.clas

α(φ)free else

TABLE II: measurement belief masses

seen as truly free. If there is a ray without any echo, we
create a distance border at the visibility limit of the sensor
using mDbn(F ) = α(φ) ∗ free. Where α(φ) 7→ [0, 1] is a
weighting function to incorporate the angle specific range for
a certain LIDAR.
Based on an approach proposed in [9] dynamic measure-
ments (caused by moving objects) are detected and pruned.
The dynamic detection is based on the arising conflict
between belief masses generated from a distance border mDb

and belief masses from a maps leaf node mL.

IV. ADAPTIVE OCCUPANCY GRID MAP

Fig. 4: The free space polygon (red) changes the cell size on
its outline if appropriate.

Using the techniques for ray-based LIDAR modelling pre-
sented above, an evidential occupancy grid map with adap-
tive cell sizes can be updated. First we introduce an adaptive
cell structure, which stores its resolution independently from
cell size. Then, we present a free space refinement process,
which first needs to build a free space polygon using the
distance borders and then split cells intersecting the free
space polygon edges. Neighbouring cells, where the belief
mass state is equal are merged. Finally an ageing process for
cells is presented, which enables continuous online operation.

A. Cell Structure and Modelling

As already described above we use a node modelling
technique proposed by [2] named ND-tree. Each node has
ND sub nodes (for 2D modelling N2 sub nodes). While
the cell size is controlled by any measured distance border
we have to make sure that a cell is only split if a higher
resolution is requested. So we equip our leaf nodes with
a resolution attribute node.res that is independent from
the current cell size node.size. This enables us to store a
measured cell resolution and only split cells if a measurement

provides a higher resolution. A parent node node, where
sub nodes are merged receives its resolution from the first
containing leaf node.
The cell size is limited by the global maximum cell res-

Algorithm 1: split (node, distance border)

Data: node n, distance border Dbk
1 if [res(Dbk) > n.res orMaxR > n.size] and n is leaf then
2 update(n,Dbk);
3 return;
4 else
5 createSubNodes(n);
6 end if
7 Nsub = calcIntersectNode(n,Dbk);
8 for sub : Nsub do
9 split(sub,Dbk);

10 end for

olution MaxR. At initialization the root node size needs
to be set. But the tree is able to grow in ascending and
descending direction as described in [2]. So we are able to
minimize the tree depth of our adaptive map tree. To enable a
fast neighbour finding (needed for traversal algorithms) each
node is equipped with its parent node index. This enables us
via the function node.neighbourNode() to find a requested
neighbouring node at the same or higher level.

B. Splitting and Merging of Cells

The grid map refinement process is divided into two steps.
First, if any cell is intersected by a distance border Dbn with
mDbn(O) > 0, it will be split according to the ray resolution
of the distance border (res(Dbk)). Algorithm 1 shows the

Algorithm 2: merge (node)

Data: node n
1 if n is no leaf then
2 Nsub = getSubNodes(n);
3 data = getF irstLeafData(Nsub);
4 if allNodesEqual(Nsub, data) then
5 n.dat = data;
6 n.res = data.res;
7 deleteAllSubNodes(n);
8 else
9 for sub : Nsub do

10 merge(sub);
11 end for
12 end if
13 end if

split process scheme. The split function acts recursively for
every intersected sub node (sub). The algorithm will termi-
nate if the requested ray resolution (res(Dbk)) or the maxi-
mum cell resolution MaxR is reached. All sub nodes which
are intersected by a distance border (calcIntersectNode)
are split and updated with belief masses from the distance



border. The cell update process (called from algorithm 1 at
line 2) is described in section IV-D. After the appropriate
cells have been updated with new measurements, the merge
process in algorithm 2 is triggered. The merge algorithm
can be called using the current root node as parameter. It
will merge all equal leaf nodes within the node n. For the
merge operation an arbitrary belief mass of a leaf within
node n needs to be determined (getF irstLeafData). This
belief mass (data) is used to check all leafs nodes within
n for equality. The merge process is triggered in descending
direction and corresponds to a depth first search (DFS). Node
equality is determined by using algorithm 3 traversing sub
nodes in descending direction and checking condition τ from
equation 1. A node is merged if free and occupied belief

Algorithm 3: allNodesEqual (Nn, data)

input : node set Nn, belief masses data
output: returnVal=true if all leaf nodes in Nn are equal

1 returnV al = true;
2 for n : Nn do
3 if n is leaf then
4 if not τ(data, n.dat) then
5 returnV al = false;
6 return returnV al;
7 end if
8 else
9 Nsub = getSubNodes(n);

10 returnV al = allNodesEqual(Nsub, data);
11 end if
12 end for
13 return returnV al;

masses for all sub nodes nodes are similar. Equation 1 shows
the required conditions for a node merge. Note that the
merge condition is mainly based on the unknown belief mass
(mnn

(U)). The cell resolution should remain high, if there
is any doubt of the cells state (this is controlled by κ). The
threshold variable λ controls the information loss caused by
a cell merge ((λ = 0) =⇒ no loss). The current node ni
has to be compared against a neighbouring node nk.

τ(ni, nk) =


true if mni

(U) = 1 ∧mnk
(U) = 1

false if mni
(U) > κ ∨mnk

(U) > κ

true if Ξ(ni, nk, O) ∧ Ξ(ni, nk, U)

(1)

Ξ(ni, nk, A) =

{
true if |mni(A)−mnk

(A)| ≤ λ
false else

C. Free Space Refinement Process

Using the distance border introduced in section III-A a free
space polygon is built taking into account distance borders
with a free belief mass m(F ) > 0 only. Please note that
distance borders with occupied belief mass m(O) > 0 are
already used to split nodes with algorithm 1. The free space
polygon Fp can be defined by equation 2 where dist(Db)
returns the measured distance of a particular distance border
and ray(Db) returns a set of all distance borders measured
in the same ray. DB is the set containing all distance borders

of the current measurement cycle.

Fp ={v|v ∈ DB ∧mv(F ) > 0∧ (2)
∀k ∈ ray(v) : dist(k) ≥ dist(v)}

Employing the free space polygon, partially measured cells
can be identified and split. Each cell which intersects the
polygon edge needs to be split until a certain ray resolution
is reached. The ray resolution is calculated according to the
distance border uncertainties. To identify the particular cell
we use a modified voxel traversal algorithm presented in
[11]. At algorithm 4 the start SP and end points EP represent
a polygon edge of the free space polygon. The fast voxel

Algorithm 4: traversal split algorithm 2D
Data: start SP , end EP , root node m

1 node = m.search(SP );
2 node = node.getParent();
3 boundingBox= calcBoundingBox(SP ,EP );
4 −→u = SP ;
5 t = 0;
6 while boundingBox contain −→u do
7 //initialize: tMaxX , tMaxY , tDeltaX , tDeltaY , stepX ,

stepY according to [11]
8 [X,Y ] = node.getIndx(−→u );
9 nextNode = node.get(X,Y )

10 while nextNode is leaf ∧ X,Y is in node do
11 split(nextNode);
12 if tMaxX < tMaxY then
13 tMaxX = tMaxX + tDeltaX;
14 X = X + stepX;
15 t = tMaxX;
16 else
17 tMaxY = tMaxY + tDeltaY ;
18 Y = Y + stepY ;
19 t = tMaxY ;
20 end if
21 nextNode = node.getChild(X,Y );
22 end while
23 −→u = −→u + t−→v ;
24 if nextNode is leaf then
25 nextNode = nextNode.search(−→u );
26 else if X,Y is not in node then
27 [X,Y ] = node.neighbourIndx(X,Y );
28 node = node.neighbourNode(X,Y );
29 end if
30 node = node.getParent();
31 end while

traversal algorithm needs to be extended for non equidistant
squares. The original algorithm is developed for equidistant
voxel grids and is located in lines 10 to 22. So we treat the
sub nodes nextNode of a particular node node as a single
voxel grid. We place a second loop around the sub node
traversal to ensure that we stay within the node’s boundary
and that we keep the traversal on the same level. The level
of current node traversed (node) is always located one level
higher than a leaf node. The inner loop is skipped if either the
particular node nextNode is no leaf node or the requested
index [X,Y ] is not in the current node node. At line 23 of
algorithm 4 the ray equation −→u + t−→v is used to find the
next point on the ray. Figure 4 show the result of algorithm
4. The free space polygon is shown in red, the grid cells
are shown in blue. The grid status is shown after integrating



(a) χ2 based refinement (uses 28628 nodes) (b) ray-based refinement (uses 27636 nodes)

(c) video view as reference for an urban scenario (d) histogram of the cell resolution for the current frame

Fig. 5: Comparison of evaluated refinement algorithm. Figure 5a shows an adaptive map build using the statistical χ2-
test. The resulting map in 5a shows a finer resolution in free space area between two parked cars. The proposed adaptive
algorithm in 5b choose a coarser resolution which results in a higher free space probability. A Video reference is given in
5c. A comparison of amount of refined cells and its resolution is shown in 5d.

only a single measurement, so the occupancy (red) and free
states (green) remain with low masses.

D. Evidential Cell Update and Cell Ageing
The next step employs the measurement belief masses

in order to update particular map cells. As a last step,
belief masses of a map cell need to be decremented if
the environment may have changed. So we introduce a cell
ageing process here. The cell ageing can be applied optional
if the memory footprint of the map matters. For offline map
building the ageing process is unnecessary for reasonable
map sizes.

1) Evidential Cell Update: For updating belief masses of
the map the Dempster’s rule for combination (see equation
3) is used to combine the belief mass of a leaf node mL

with a belief mass of a distance border mDb.

mL⊕Db(A) =
1

η

∑
B∩C=A6=∅

mL(B) ·mDb(C) (3)

η =1−mL(O)mDb(F )−mL(F ) ∗mDb(O)

mL(O) =mL⊕Dbn,φ,k(O) (4)
mL(F ) =mL⊕Dbn,φ,k(F ) (5)
mL(U) =mL⊕Dbn,φ,k(U) (6)

The set A ⊆ Ω contains any state of interest. B and C
are arbitrary subsets of Ω, creating A by their intersection.
Where η can be regarded as the agreement of the belief of the
masses. Equations 4 to 6 update the concrete belief masses
of a cell.
To update occupied cells, we have to find leaf cells overlap-
ping a distance border. For the update of free cells, a ray
tracing or traversal algorithm has to be utilized. We use the
same traversal algorithm 4 for the free space update as we
already used for the cell splitting. The start point SP and
end point EP of the traversal have to be replaced by the
sensor origin and the particular distance border. If multiple
measurement corresponds to the same cell the cell is updated
multiple times.

mM,k(O) =
mM,k(O)

γ
(7)

mM,k(F ) =
mM,k(F )

γ
(8)

γ =mM,k(O) +mM,k(F ) +mt

mt =mM,k(Ω) + κ

Arising conflicts from these updates can be used to identify
dynamic objects, which is presented in [9].



An overview of all processing steps is given in figure 5
showing the grid map processing in an urban scenario.

2) Cell Ageing: A cell ageing process ensures that the
map corresponds to the actual measured environment. In
adaptive grid maps the ageing process additionally conserves
computational and memory resources and enable the map-
ping to be processed online. The ageing equations 7 and 8 are
adapted from [12], where mt is a temporary mass variable
used for increasing a cell’s unknown mass using κ.

V. EVALUATION

The proposed algorithms are experimentally evaluated in
a challenging urban scenario (for details see table III).
Highway and rural scenarios differ in the mapped area
which increases the memory resources only. We compare
the proposed ray-based refinement approach against our own
implementation of the statistical approach proposed in [5]. In
order to further analyse adaptive map techniques we measure
the runtime of the map update process. The map update

Fig. 6: box plot shows runtime comparison between χ2-
splitting and the proposed ray-based splitting

process also compares the adaptive resolution approaches
against a well known static map. The static map is an own
implementation using a 2D Array with fixed cell resolution.
Furthermore we compare the different all three approaches in

Fig. 7: box plot shows runtime comparison of map update
with adaptive cell sizes and static grid resolution

its resulting cell resolution and memory consumption. Two
Ibeo LUX sensors are used for the evaluation. Scans were
fused sequentially.

scenario travelled scan points scan points AVG cov.
distance(m) per frame total area(m2)

urban 3639 1100 12020184 212.53

TABLE III: evaluation scenario

A. Adaptive Refinement

Applying the algorithms from section IV we compare two
different adaptive refinement approaches using the scenario
from table III. We compare our ray-based refinement against
the statistical approach presented in [5]. The algorithm given
in [5] introduces an unknown counter to solve the problem
of partially free cells. They are incremented for each cell,
which is not reached by a sensor ray because an obstacle
has been hit before. From the computational point of view
the algorithm proposed in [5] needs to update all cells
in the possible sensor range. The algorithm we propose
needs to update all cells on the way from the sensor to the
measurement.
The different refinement approaches are compared in figure
5 comparing the final cell resolution. The zoomed region in
figure 5a and 5b is observed in a short timespan only. For
the proposed adaptive approach the cell resolution results at
coarser level. This is caused through the splitting algorithm
which only splits a cell which intersects the free space
polygon. Using the statistical split process all cells generating
a conflict were split. The cells in figure 5a were split
because the whole area generates a conflict between free
and unknown space. Applying statistical χ2 algorithm a
ray measuring free will split all intersecting unknown cells.
Observing the same cells for a longer timespan both algo-
rithm will produce the same cell resolution. Figure 5d shows
the difference produced by both algorithms in the number
of cell for a particular resolution. The χ2 based splitting
produces 992 more cells at 15 cm resolution (maximum
resolution MaxR) than the proposed approach. The adaptive
refinement process described in section IV-C has an average
runtime of 0.701 ms, making it 3.4 times faster than the
statistical χ2-based splitting (figure 6). This is caused by
the CPU-intensive iterative split process. The evaluation has
been made on an Intel i7 running at 2.5 Ghz.
B. Map Update

In static and adaptive map representations the update
process remains basically the same. Free measurements need
to be integrated through a ray tracing algorithm and for
each occupied measurement the corresponding cell needs to
be found. Figure 7 shows the update process runtime of a
static and adaptive implementation using a maximum cell
resolution of 20 cm. Please note that adaptive map from
figure 7 is updated using the proposed ray based approach.
The map update performance with the χ2 based approach
differs only marginally from our approach and is not shown
in figure 7 for sake of clarity. The amount of child nodes
N2 is varied for the adaptive grid map. Please note that the



amount of child nodes has only a marginal effect on the
update process runtime. In our implementation of the 42-
tree the update process is in average 0.33 slower than our
static grid map. That is caused by the expensive ray tracing
process on adaptive grids. The amount of touched cells using
ray tracing for an adaptive update is smaller than for static
map updates. Unfortunately ray tracing on non equal sized
grids using a non optimized algorithm [11] is computational
heavy and leads to a worse update performance.

root node branch leaf sub nodes tree memory
area (m2) nodes nodes (1st level) depth (MB)

static mapping
3276.8 0 268435456 268435456 1 1073.74
6553.6 0 1073741824 1073741824 1 4294.96

ray based refinement mapping
3276.8 2048672 6146017 4 14 98.34
11809.8 1390306 11122449 9 10 150.15
3276.8 1512740 22691104 16 7 290.45
15625 1544293 37063035 25 7 463.29

TABLE IV: memory consumption static and adaptive grid
with minimum cell size 20 cm (scenario from table III)

However the real strength of a tree-based grid is the mem-
ory consumption. Table IV shows the number of branch/leaf
nodes, which are allocated in static and adaptive repre-
sentations. Please note that the static map implementation
allocates 4 Bytes per node where the tree based map
implementation allocates 12 Bytes per node. The memory
consumption can only be compared taking the mapped area
from table IV into account. Static mapping cannot compete
with adaptive mapping approaches in terms of memory.
The memory consumption of the adaptive grid map is 10.9
times smaller than the static grid map observing 3276.8m
field of view. The amount of sub nodes N2 increase the
memory consumption significantly. In relation to a quadtree
(22) a 52-tree, consumes 4.7 times more memory in our test
scenario. This is caused by the expensive subdivision in 52-
trees. When a node is split 25 child nodes are allocated but
probably not all of them can be used later.
C. Implementation Details

Both grid map representations (static and adaptive) are
implemented using C++ templates. For the ND-tree imple-
mentation the parameters N and D can be chosen freely at
compile time. Realizing ray tracing on static grid maps a
Bresenham algorithm is used for near range measurements,
for far range measurements a triangle rasterization algorithm
is used. For the motion compensation of the map vehicle
odometry is used for the online map. For the offline approach
any improved ego motion can be used (e.g. Graph SLAM).

VI. CONCLUSION AND FUTURE WORK

In this paper an adaptive grid map is proposed, which is
refined using LIDAR sensor rays. The sensor rays create so-
called distance borders. These distance borders are employed
to build a free space polygon splitting partially free cells.
Furthermore we presented an algorithm, which applies to
online and offline mapping requirements using a cell ageing
approach. The proposed free space refinement process is
faster than the statistical split test from [5]. The resulting

resolution of cells laying in regions which were observed
in a short timespan only turn into coarser level faster using
the proposed algorithm. That cause a slightly lower memory
consumption. However, an implementation of the ray-based
refinement approach requires more knowledge about the
sensor.
We have shown that the proposed adaptive algorithm is
memory efficient but performs worse in terms of CPU-
runtime comparing it to the static grid map counterpart.
Though the expensive tracing of rays could be replaced
with location code-based traversal approaches presented in
[13]. We will explore further ways to accelerate updates of
adaptive grid maps including parallelization. Future work we
will investigate in sensor modelling and mapping 3D data in
an optimized adaptive grid map.

VII. ACKNOWLEDGEMENTS

This work is funded by the Federal Ministry of Education
and Research of Germany (BMBF) within the RECBAR
project.

REFERENCES

[1] A. Elfes, “Occupancy grids: a probabilistic framework for robot
perception and navigation,” Ph.D. dissertation, Carnegie Mellon Uni-
versity, Pittsburgh, PA, USA, 1989.

[2] E. Einhorn, C. Schroter, and H. Gross, “Finding the adequate res-
olution for grid mapping - cell sizes locally adapting on-the-fly,” in
Robotics and Automation (ICRA), 2011 IEEE International Conference
on, May 2011, pp. 1843–1848.

[3] M. Langerwisch and B. Wagner, “Building variable resolution oc-
cupancy maps assuming unknown but bounded sensor errors,” in
Intelligent Robots and Systems (IROS), 2013 IEEE/RSJ International
Conference on, Nov 2013, pp. 4687–4693.

[4] G. K. Kraetzschmar, G. P. Gassull, K. Uhl, G. Pages, and G. K.
Uhl, “Probabilistic quadtrees for variable-resolution mapping of large
environments,” in Eds.), Proceedings of the 5th IFAC/EURON, 2004.

[5] D. Joubert, W. Brink, and B. Herbst, “Pose uncertainty in occupancy
grids through monte carlo integration,” in Advanced Robotics (ICAR),
2013 16th International Conference on, Nov 2013, pp. 1–6.

[6] H. Carrillo, P. Dames, V. Kumar, and J. Castellanos, “Autonomous
robotic exploration using occupancy grid maps and graph slam based
on shannon and rényi entropy,” in Robotics and Automation (ICRA),
2015 IEEE International Conference on, May 2015, pp. 487–494.

[7] M. Schmid, M. Maehlisch, J. Dickmann, and H.-J. Wuensche, “Dy-
namic level of detail 3d occupancy grids for automotive use,” in
Intelligent Vehicles Symposium (IV), 2010 IEEE, June 2010, pp. 269–
274.

[8] A. Hornung, K. M. Wurm, M. Bennewitz, C. Stachniss, and
W. Burgard, “Octomap: an efficient probabilistic 3d mapping
framework based on octrees,” Autonomous Robots, vol. 34, no. 3, pp.
189–206, 2013. [Online]. Available: http://dx.doi.org/10.1007/s10514-
012-9321-0

[9] J. Moras, V. Cherfaoui, and P. Bonnifait, “Moving objects detection by
conflict analysis in evidential grids,” in Intelligent Vehicles Symposium
(IV), 2011 IEEE, 2011, pp. 1122–1127.

[10] G. Shafer, A Mathematical Theory of Evidence. Princeton: Princeton
University Press, 1976.

[11] J. Amanatides and A. Woo, “A fast voxel traversal algorithm for ray
tracing,” in In Eurographics 87, 1987, pp. 3–10.

[12] J. Effertz, “Autonome fahrzeugführung in urbaner umgebung durch
kombination objekt- und kartenbasierter umfeldmodelle,” Ph.D. disser-
tation, Technischen Universität Carolo-Wilhelmina zu Braunschweig,
Februar 2009.

[13] S. F. Frisken and R. N. Perry, “Simple and efficient traversal methods
for quadtrees and octrees,” Journal of Graphics Tools, vol. 7, p. 2002,
2002.


