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Abstract—Connected cars need robust protection against net-
work attacks. Network anomaly detection and prevention on
board will be particularly fast and reliable when situated on the
lowest possible layer. Blocking traffic on a low layer, however,
causes severe harm if triggered erroneously by falsely positive
alarms. In this paper, we introduce and evaluate a concept for
detecting anomalous traffic using the ingress control of Time-
Sensitive Networking (TSN). We build on the idea that already
defined TSN traffic descriptors for in-car network configurations
are rigorous, and hence any observed violation should not be a
false positive. Also, we use Software-Defined Networking (SDN)
technologies to collect and evaluate ingress anomaly reports,
to identify the generating flows, and to ban them from the
network. We evaluate our concept by simulating a real-world
zonal network topology of a future car. Our findings confirm
that abnormally behaving individual flows can indeed be reliably
segregated with zero false positives.

Index Terms—Vehicular network security, Time-Sensitive Net-
working, 802.1Qci, Software-Defined Networking

I. INTRODUCTION

Current vehicles build new features on sensors, actuators,
and Electronic Control Units (ECUs). Modern premium cars
use a combination of traditional bus systems such as Controller
Area Network (CAN), and Ethernet technologies for newly
selected links. Future in-car networks will transform to flat
Ethernet topologies [1]. In those networks, communication of
various domains and distinct requirements on timing share the
same Ethernet infrastructure.

This technological transition to shared Ethernet backbones
raises the challenge of meeting the diverse Quality-of-Service
(QoS) requirements of in-car communication. Real-time Eth-
ernet extensions can provide robust QoS guarantees. The IEEE
umbrella standard Time-Sensitive Networking (TSN) is the
leading candidate for deployment in the vehicular world.

Complementary security challenges arise from connecting
driving vehicles to the global network, and rigid countermea-
sures are needed to protect in-car networks against attacks.
The attack surface of a car spans multiple interfaces [2].
With the release of a new standard for cyber-security in road
vehicles (ISO/SAE 21434), the industry must harden security
protections for future cars, which promises highest robustness
on the lowest available layer. Online capabilities and the
tightened interconnection of internal domains with distinct
security requirements increase the vulnerability of safety-
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critical functions and raise arms for multi-sided measures to
secure future cars [3].

In this work, we show that technologies, which are already
under design discussion for in-car networks, can jointly im-
prove the security of in-car communication architectures. First,
TSNs ingress control [4] is part of a TSN network design. It
forces all inbound traffic to match regular patterns (e.g. tim-
ing, bandwidth, size) by dropping frames. Second, Software-
Defined Networking (SDN) uses a global network view to steer
and control traffic flows. The central SDN network controller
enables state management and reconfiguration of forwarding
devices. We combine these technologies to form a Network
Anomaly Detection System (NADS) that uses the ingress
control of TSN to detect abnormal communication behavior
and SDN to collect this detections. We evaluate the anomaly
detection performance of TSN ingress control in a case study.

The remainder of this work is structured as follows. Sec-
tion II discusses background knowledge and related work.
In Section III, we introduce our concept and its underlying
mechanisms. Our evaluation in Section IV is based on a case
study, which we simulate using a realistic topology. Finally, we
conclude in Section V with an outlook on future challenges.

II. BACKGROUND & RELATED WORK

A. Network Anomaly Detection

Intrusion Detection Systems (IDSs) are used to identify
attacks on a system. The observed system can be a host (H)
or a network (N). There are two IDS flavors. (1) Signature
detection systems, which can detect attack patterns saved in
predefined attack signatures. (2) Anomaly Detection Systems
(ADSs) use a predefined description of regular patterns and
all irregular patterns detected susceptible to be attacks. Our
approach is a Network Anomaly Detection System (NADS)
because it inspects a network (N).

There are many ADS algorithms to describe and eval-
uate a regular state [5]. Because ADSs build on features
to distinguish between normal and abnormal behavior, any
unclear or ill-defined distinction or rare event may lead to
false anomaly reports and degrade detection quality. One key
challenge for ADSs is to keep false-positive rate as low as
possible. This work builds on the IEEE 802.1Qci part of a
time-sensitive network, which should clearly and correctly
define the normal real-time traffic link-layer behavior from
quality assured network design phases.
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Fig. 1. IEEE 802.1Qci Per-Stream Filtering and Policing [4]

B. Per-Stream Filtering and Policing

TSN defines real-time Ethernet standard extension sum-
marized in IEEE 802.1Q [4]. It subsumes different protocol
mechanisms for traffic shaping and time synchronization.
In particular, the ’IEEE 802.1Qci Per-Stream Filtering and
Policing’ (Qci) defines shaping of incoming traffic per port.

Figure 1 shows the structure of the filtering process in
IEEE 802.1Qci, which applies to all ingress traffic. A frame
must pass through three stages before queueing. The first
stage identifies individual streams and maps them to the
corresponding gates and meters. The second stage consists of
the stream gates. A gate can be “OPEN” or “CLOSED”, which
changes on a predefined schedule based on a network-wide
synchronized clock. If the gate is “CLOSED”, the frame will
be dropped. If the responsible gate is “OPEN”, a flow meter
inspects the frame. A flow meter applies an algorithm that
determines whether a frame is allowed to pass. An example
flow meter could control a minimum time between two frames.
Such a flow meter would drop a frame if too little time has
passed since the previous frame arrived.

C. Software-Defined Networking

SDN [6] introduced the paradigm of programmable
switches, which since then has largely impacted data-center
and campus networks. In recent years, use cases of SDN
extended to other areas such as vehicular networks [10] and
industrial plants [11]. In SDN, a central controller with global
network knowledge decides per flow on forwarding rules. For
a frame without specific forwarding rule, a default will be
applied, which drops the frame or forwards it to the controller
for further actions. We use the ability of the central controller
to collect statistics of the forwarding devices, identify the
abnormal flows, and execute possible countermeasures.

D. Related Work

Miller and Valasek [8] show that modern cars are vulnerable
to attacks. In their work, they describe how they obtain
unpermitted control of an unaltered passenger vehicle. They
gained remote control over safety-critical functions like engine
and brakes. The entry point is the cellular connection of the
cars infotainment system. They use the entry point to send
manipulative messages into the in-car infrastructure. A NADS
could detect such messages.

Rajbahadur et al. [9] worked out a survey on anomaly
detection for connected vehicles. They list numerous work in

the spectrum of anomaly detection for current cars. Most of the
works discussing the use of ADS inside the car are considering
traditional CAN bus devices and infrastructure. Ethernet in-
car infrastructures have very different communication patterns
leading to different requirements on a NADS.

SDN is already in design discussion for in-car networks.
Halba et al. [10] show how SDN controller applications can
improve the robustness and safety of the in-car network with
fast fail-over mechanisms. Gerhard et al. [11] use SDN to
configure TSN networks in the context of industrial ethernet.
In previous work [12], we analyzed the real-time capabilities
of SDN and introduced an integrated Time-Sensitive Software-
Defined Networking (TSSDN) switching methodology that
combines TSN and SDN capabilities. In this work, we use
SDN for collection of statistics and countermeasures.

III. DETECTING NETWORK ANOMALIES WITH TSN

In IEEE 802.1Qci each unique traffic flow is represented as
a stream, to which Per-Stream Filtering and Policing applies.
A rigorous Qci network configuration enforces valid traffic
patterns on the link-layer. For example by restricting streams
to a reserved bandwidth or validate the timing of cyclic signals.
In this concept TSN “streams” and SDN “flows” describe
identical network traffic.

The safety-critical communication flows of in-car networks
are well-known and a priori specified in network designs.
This knowledge includes worst-case analyses, communication
patterns, and timing details. Implementing Qci should include
configurations based on the known network parameters (e.g.,
flow and burst sizes, maximum transmission unit, time slot-
ting). A rigorous configuration can thus enforce the expected
behavior of traffic flows in the network.

Thereby, the Qci configuration serves as an implicit descrip-
tion of the boundaries between normal and malicious network
behavior on the link-layer. In this sense, a frame dropped by a
Qci rule indicates an abnormal behavior and can be interpreted
as a detector of an anomaly—a valuable input for a NADS.

Switches collect statistics of critical values for adminis-
trative inspection. Counting individual frame drops of flow
meters and stream gates accumulates anomaly indicators,
which are invisible to other systems in regular networks. These
indicators remain free of false positives, provided the Qci
network configuration is correct.

Switches can communicate their statistics to a central
manager, e.g., by NETCONF. Such a manager may be a
dedicated network monitor or an SDN controller. The latter can
request periodic transmissions of statistics from all switches
in the network using the OpenFlow protocol. The duration
of this period introduces a delay until an anomaly is reliably
discovered. Still, implicit pieces of information from Qci can
reach a destination where advanced controller applications
can be implemented without putting additional stress onto the
switches or adding NADS devices to the network. Such a
NADS controller application can gather this data and inspect
it independently or in combination with other reports.
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Fig. 2. Per-Stream Filtering and Policing combined with SDN to a NADS

Figure 2 visualizes the concept of combining Qci with
SDN to form a NADS. Each port of the switch (at bottom)
hosts an instance of Qci containing its individual configuration
of regular ingress traffic, which also collects key statistics
(e.g., number of dropped frames per gate/meter). The switch
forwards these statistics upstream to the SDN controller. In
this example, the Per-Stream Filtering and Policing in port 0
of switch 0 receives a frame that violates a meter configuration
and gets dropped. This triggers a change of dropped frames
statistics at its meter, which is communicated to the SDN
controller. The NADS application of the controller inspects
whether the reports of the switches implicitly indicate an
anomaly in the vehicle network (e.g., a counter of a statistic
increases). Whenever an anomaly is detected, the NADS
controller application could escalate combined reports to an
even higher instance (e.g., a cloud defense center [13]), or
initiate countermeasures by reconfiguring the network flow
tables and the TSN settings.

Flow meters that report anomalies from Qci instances can
also be used for detection tasks only without a deletion of
frames. By adding other statistics (e.g., number of anomalies),
it is possible to use flow meters that never drop frames but still
inspect the assigned traffic for abnormal behavior and report it.
This way, attacks could be detected even though the meter is
unable to mitigate. In this case, meters count and report statis-
tics, which are examined by the NADS controller application
with more complex algorithms. The SDN controller may then
mitigate anomalies using any kind of network reconfiguration.

IV. CASE STUDY

We now evaluate the NADS concept in a case study. This
case study is based on a real in-car communication matrix in
a zonal Ethernet topology. We also used this communication
matrix in previous work [14] [15]. The network contains TSN
forwarding and filtering on each port. Our simulation environ-
ment consist of OMNeT++ discrete event simulator1, INET
framework2 and our public open-source simulation models3

CoRE4INET, FiCo4OMNeT and SignalsAndGateways.

A. Topology & Scenarios

As shown in figure 3 the network topology is split into
nine zones (3xFront, 3xCenter, 3xRear) and contains four

1 omnetpp.org 2 inet.omnetpp.org 3 sim.core-rg.de
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Fig. 3. Network topology of the simulation-based case study

types of devices (CAN hosts, Ethernet hosts, switches, CAN-
Ethernet gateways). CAN hosts are connected via busses to
the closest gateway depending on their physical placement.
Each gateway represents a zone of the topology. The CAN
traffic is generated from an anonymous communication matrix
of a real production car. CAN messages sent between zones
are transported via an Ethernet backbone. In addition to
the gateways, Ethernet hosts such as cameras, LIDARs, a
radar, and ECUs are using this backbone for communication.
The backbone consists of three switches interconnected via
100Mbit/s Ethernet links.

There are three traffic classes in this network:
• Safety critical (pcp 7): Synchronous frames with the

highest priority are sent from “Radar” and “Sensor Fu-
sion” to “Collision Avoidance”. A static Time Division
Multiple Access (TDMA) schedule in each network de-
vice implements this synchronous traffic by configuration
of Time-Aware Shaping (TAS) and its gate control lists.

• Data streams (pcp 5): Cameras and LIDARs are stream-
ing data with priority 5 to the “Sensor Fusion” ECU. For
this traffic a certain bandwidth is reserved along its paths
and a Credit Based Shaping (CBS) is shaping egress.

• CAN tunneling (pcp 0,1,3,6): CAN messages that are
exchanged between devices located in different zones are
send via Ethernet. There are a total of 416 different
CAN IDs generated by the CAN hosts of which 201
are transported over the backbone network. They are sent
with four different priorities mapped to their criticality.
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Each port contains a Qci configuration for all incoming
traffic classes. Any configuration uses known parameters of
the network design to check its valid behavior. We use four
different types of ingress control in this case study:

• Timing: This type uses the static TDMA schedule of
the safety critical traffic. It is used to configure the gate
control list that controls the state of the stream gates.

• Bandwidth: For the data streams a metering is config-
ured to enforce a maximum incoming bandwidth [16].

• Frame size: Because a CAN tunneling frame contains
always one CAN message the maximum size of these
Ethernet frames is 64B. For the ingress control of this
traffic a meter drops all frames greater than 64B.

• Undefined stream/flow: Ingress control drops traffic
without a matching stream filter.

This case study inspects the simulation of four attack sce-
narios targeting the four ingress control types. In all scenarios
the attack starts at 10 s simulation time and the size of injected
attack frames is uniformly distributed. In each scenario a
different device connected to “Switch Front” becomes the
source of the attack:

• Radar: This attack uses the stream of the safety critical
traffic to communicate with “Collision Avoidance”.

• Camera Front: The second attack is executed by
“cam Front” using its data stream.

• Gateway FrontLeft: The third attack uses the CAN
tunnneling stream between gateways.

• Infotainment: This attack does not use an established
stream. It tries to get in contact with any devices.

B. Detection

The detection performance of the NADS concept depends
on the Qci configuration. In this case study, the ingress control
always drops frames violating the Qci configuration. Therefore
the indicator for anomaly detection is dropping of frames.

Figure 4 presents a simulation period for each of the
four ingress control type scenarios. They show the number
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of dropped bytes per switch in a simulation time window
between 9.9 s and 10.1 s. In all four scenarios the ingress
control of “Switch Front” starts to drop frames when the
attack starts at 10 s. In case of the timing and bandwidth
ingress control types “Switch Center” detects some frames that
pass the checks of the first switch because of ingress control
limitations. Because dropping of frames is also mitigating
the attack impact “Switch Rear” detects no invalid behavior.
When this information is used e.g. to increment dropped bytes
counters, the NADS controller application can detect abnormal
behavior of individual flows. This demonstrates the detection
of invalid behavior of individual streams. Further, there is no
dropping before the attack starts. Which shows, with suitable
configuration there are no false positive detections.

In case of timing, bandwidth and frame size ingress control,
some attack frames are reaching the target host. The attack
frames that are passing the ingress control show the limitations
of the detection. Attack patterns that comply to ingress control
rules are not detected.

The timing ingress control allows incoming frames in static
time windows using a globally synchronized time. When a
frame is of suitable size or send with suitable timing it can
pass the ingress control of the first switch. Only frames that
have the size and send time of the original flow are not detected
by any switch and reach the target host.

Bandwidth ingress control limits the incoming bandwidth.
When an attack is not exceeding the allowed bandwidth it can
pass the ingress control and is not detected. Figure 5 shows an
evaluation of such a bandwidth meter. The original data stream
send by “Camera Front” has a bandwidth of ca. 7Mbit/s.
Dropping of frames is related to the attack bandwidth and how
much it exceeds the original stream. Frames of other streams
are not dropped in any case. When the bandwidth of an attack
is lower than the original stream an attack is not detected.

The frame size ingress control does not drop frames with
an allowed size (in this case 64B). If the attack consists only
of such frames it is not detected

The results show that a link-layer anomaly detection is
possible with Qci. With suitable configuration the established
NADS performs with zero false positive detections. Yet, there
are false negatives that could not be detected. To reduce
the number of false negatives, new ingress control types can
be combined or implemented. For example, a combination
of frame size and timing check would detect more invalid
behavior.
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C. Mitigation

The NADS concept comes with advantages for mitigation.
One advantage is the dropping of frames by Qci. By

dropping frames of the compromised stream, the impact of
an attack on other streams on the same path is reduced.

Figure 6 shows the minimum, mean and maximum end-to-
end latency of the data stream send by “LIDAR FrontLeft”
to “Sensor Fusion” in three different cases. In the first case
there is no invalid traffic in the car network. In the second case
“Camera Front” starts a DoS attack but Qci is disabled on all
ports. In the last case Qci is enabled. Because the queues in
our simulations are configured with an infinit size, no frames
are dropped during the forwarding process. For this reason, the
data stream does not lose any frames due to buffer overflow.
The result is, that a DoS on a concurrent stream without Qci
results in a maximum end-to-end latency of over 7 s after 20 s
simulation. The same attack in a simulation with Qci enabled
mitigates the impact of the DoS on this data stream.

Another mitigation advantage is that a SDN controller is
able to reconfigure, disable and enable flows to protect the
attack target. Further, a controller can also reconfigure the TSN
forwarding and ingress control. Discarding unknown streams
also protects the SDN controller from DoS attacks. The
programming option introduces by the combination of SDN
and TSN preserves the ability to inspecting this traffic. E.g.,
on detection a controller can configure Qci to let every 10th
frame pass and install a flow rule to forward this undefined
traffic for further inspection. With the information held by the
NADS controller application other complex inspections can
be used as base for reconfiguration of the in-car network. An
example of this could be a fail-save networking mode.

V. CONCLUSION & OUTLOOK

Security for in-car networks is a critical challenge for
future connected automobiles. Many constrained controllers
with predictable communication patterns in cars will largely
profit from protective functions in the network core, which are
most efficiently implemented on the lowest possible layer.

We devised and analysed a link-layer scheme for sani-
tizing in-car networks based on the Qci metering of TSN
ingress control. We could show that our approach can detect
significant classes of network anomalies including DDoS
without generating falsely positive alarms. This early work is
promising in particular because protective measures are solely

built on preconfigured network designs that are common in
cars. We also proposed a companion SDN controller that can
reconfigure the in-car network under attack, or report incidents
to a cloud infrastructure.

In future work, we will further evaluate this concept. Based
on a large collection of real-world attack traces, we want to
derive a systematic assessment and classification of counter-
measures based on our proposed method. We also want to test
its feasibility in our real car prototype equipped with Ethernet
TSN ingress control and SDN controller.
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