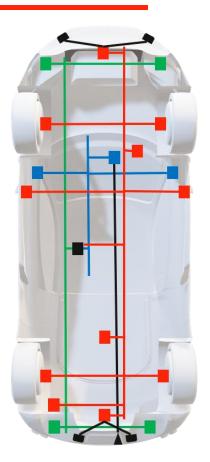
Network Anomaly Detection in Cars based on Time-Sensitive Ingress Control

IEEE VTC2020-Fall, Online

<u>Philipp Meyer</u>, Timo Häckel, Franz Korf and Thomas C. Schmidt Dept. Computer Science, HAW Hamburg, Germany <u>Communication over Real-time Ethernet research group</u>

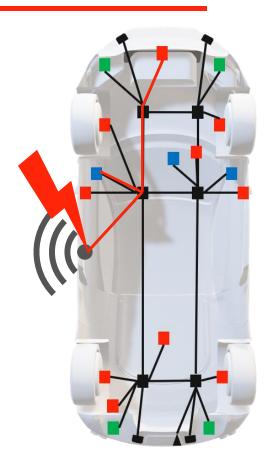
Outline

- I. Time-Sensitive Networking (TSN) in Cars
- II. Detecting Network Anomalies with TSN
- III. Automotive Case Study
- IV. Conclusion & Outlook



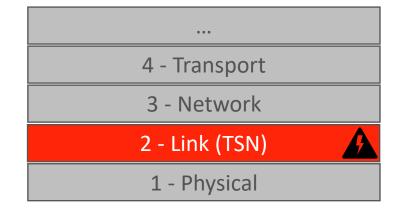
Time-Sensitive Networking (TSN) in Cars

Time-Sensitive Networking in Cars Current Architecture



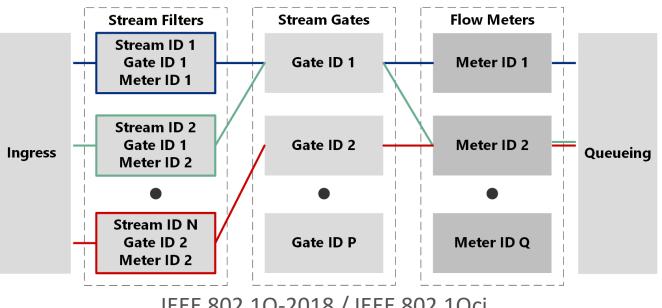
- Multitude of Electronic Control Units
- Connected over proprietary bus technologies
- In distinct Domains

Time-Sensitive Networking in Cars Future Architecture


- Flat Ethernet
- TSN deploys QoS on layer 2
- Integrated into global communication
- Attacks could result in fatal consequences

Time-Sensitive Networking in Cars Anomaly Detection on the Link Layer

- Corruption can violate QoS and safety
 - Safety is dependent on QoS
 - Layer 2 guarantees QoS
- Fast and reliable on the lowest possible layer


Multi-sided measures to secure layer 2 are needed.

Time-Sensitive Networking in Cars Per-Stream Filtering and Policing (Qci)

- Network design specifies traffic
- Traffic behavior is known
- Qci enforces known traffic parameters

IEEE 802.1Q-2018 / IEEE 802.1Qci

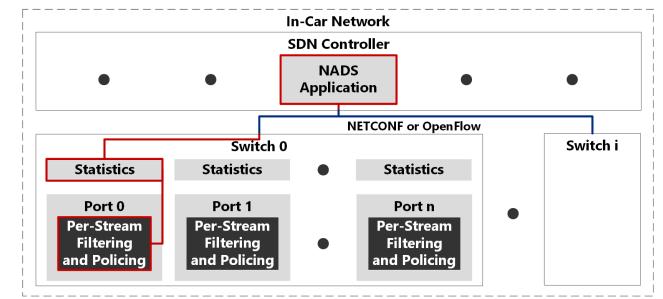
The Qci configuration serves as an implicit description of regular traffic behavior on the link layer.

Detecting Network Anomalies with TSN

Detecting Network Anomalies with TSN Network Anomaly Detection System (NADS)

- 1. A violation of a Qci rule indicates an abnormal behavior:
- 2. Anomaly indicators:
 - Frame drops
 - Missing frames
 - ...
- 3. Indicators can remain free of false positives:
 - Frame drops never occur with valid behavior
 - ...

•


- 4. Switches can communicate statistics to a central instance:
 - SDN controller

Detecting Network Anomalies with TSN Example

- Combine Qci & SDN into a NADS
- SDN controller application gathers Qci statistic
- Controller application enables further analysis

Qci misbehavior is traced without additional hardware.

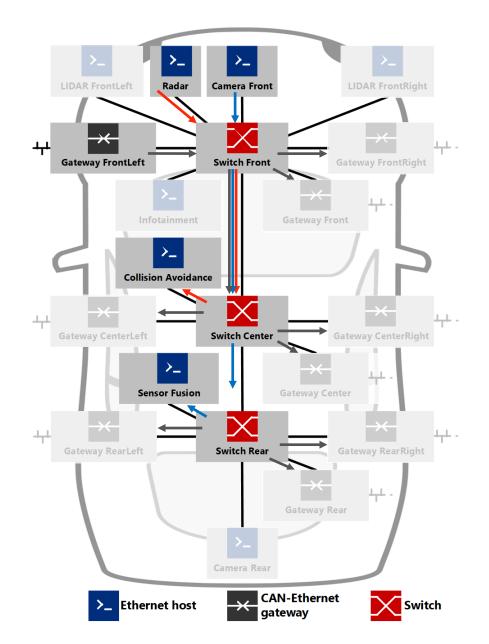
III.

Automotive Case Study

Automotive Case Study Simulation Environment (github.com/CoRE-RG)

SignalsAndGateways CAN<->CAN / Ethernet <->CAN		SDN4CoRE Programmable Switching for IEEE 802.1Q / TSN / AVB NetConf	
FiCo4OMNeT CAN Flexray	IEEE 802.10	CoRE4INET IEEE 802.1Q / TSN / AVB AS6802	
		INET framework Ethernet Internet Protocol TCP / UDP	
OMNeT++ discrete event simulator			
IEEE VTC2020-Fall HAW		ection in Cars based on Ingress Control	ORE 12

Automotive Case Study Topology

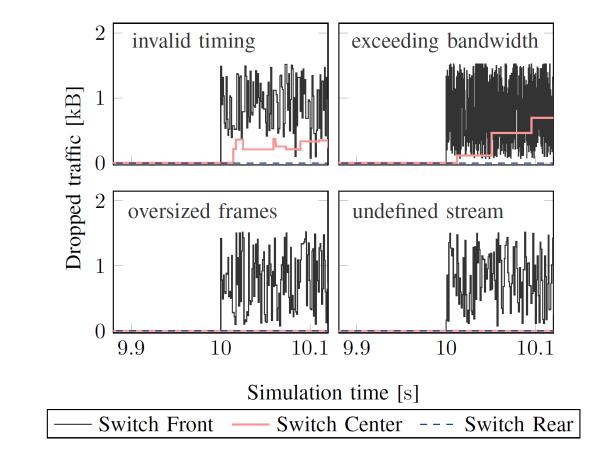

- Based on real in-car communication matrix
- Zonal 100 Mbit/s Ethernet topolgy
- TSN fowarding & filtering on each port
- Anomaly indicator: Dropping of frames

Observed Backbone Communication

- <u>Synchronos safety critical</u>
- Asynchronus data stream
- CAN tunneling

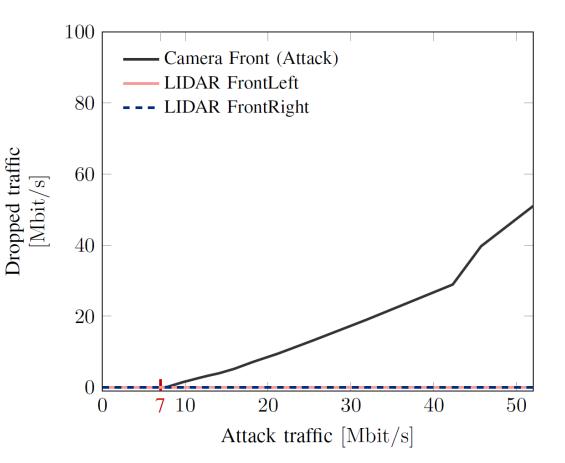
Qci configuration

- <u>Timing</u>
- Bandwidth
- Frame size
- Undefined streams will be dropped



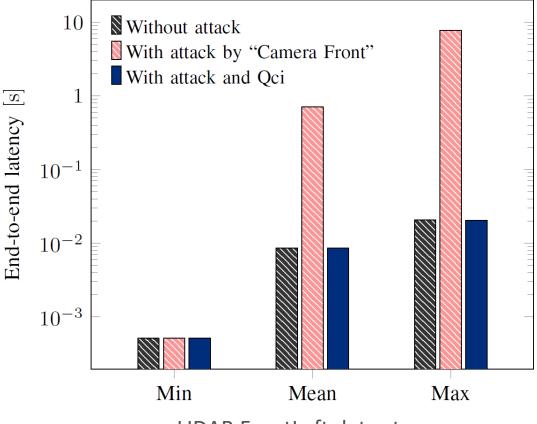
Case Study Detection

- Attack:
 - Source is the original sender
 - Frame injection (DoS)
 - Uniformly distributed size
 - Starts at 10s
- Demonstrates detection of invalid behavior for individual streams


There are no false positive anomaly detections.

Case Study False Negatives

- Stream bandwidth is 7 Mbit/s
- Dropped traffic is related to the attack bandwidth
- No frame drops below 7 Mbit/s


There are false negatives.

Case Study Mitigation

- Ingress filtering & policing:
 Drops invalid/surplus frames
- SDN controller:
 - Reconfigure or disable flows
 - Reconfigure TSN forwarding and ingress control

LIDAR FrontLeft data stream

IV.

Conclusion

Conclusion

- More efficient on the lowest possible layer
- Link-layer anomaly detection with Qci
- Can perform with zero false positive detections
- Does not require additional hardware
- Mitigation advantages through Qci & SDN

In the future:

- New or correlated meters can reduce false negatives
- Further evaluate benefits and limits

Acknowledgements

This work is funded by the German Federal Ministry of Education and Research (BMBF) within the SecVI project.

secvi.inet.haw-hamburg.de

SPONSORED BY THE

Federal Ministry of Education and Research

