
A Real-time Ethernet Prototype Platform
for Automotive Applications
Kai Müller, Till Steinbach, Franz Korf, Thomas C. Schmidt

Department of Computer Science
Hamburg University of Applied Sciences, Germany

kaim@online.de, {till.steinbach, korf, schmidt}@informatik.haw-hamburg.de

Abstract—The increasing number of driver assistance, info-
tainment and entertainment systems in automobiles results in
higher requirements for bandwidth, fault tolerance and timing
behaviour concerning the in-vehicle communication structure. In
future, in-vehicle networks based on current technologies will
reach their limits due to insufficient scalability and complexity.
Real-time (RT) Ethernet is a new, scalable approach to reduce
the complexity of these networks significantly.

This paper demonstrates the architecture of a RT Ethernet
prototype platform based on an ARM centred system-on-chip,
which achieves timing and bandwidth characteristics of a typical
future automotive application. It is based on an advanced
interrupt driven architecture.

I. INTRODUCTION

The number of electronic control units (ECUs) in automo-
biles increases continuously. From computer science point of
view, cars become more and more complex distributed RT
systems. Applications like chassis control, driver assistance
or infotainment and entertainment require novel concepts for
an integrated in-car communication backbone. RT Ethernet
is a new approach to satisfy the challenging requirements of
automotive backbone networks.

Ethernet has already been proven to be a highly scalable,
widely deployed and flexible protocol, but does not offer
reliable temporal bounds in message transmission that are
necessary for safety critical tasks.

TTEthernet [1] is a time-triggered RT Ethernet protocol
specified by TTTech [2] in collaboration with Honeywell [3].
It satisfies the special requirements of automotive and avionic
networks. To support the diversity of miscellaneous application
specific timing requirements, it joins three traffic classes –
time-triggered, rate-constrained and best-effort – with differ-
ent RT attributes on the same standard Ethernet based physical
infrastructure, allowing a homogeneous network all through
the vehicle.

For our research on the TTEthernet protocol and RT Ether-
net based in-car networks, we built a prototype platform based
on an ARM9 system-on-chip. To the best of our knowledge
this is the first microcontroller based software implementation
of the TTEthernet protocol stack. Using this architecture, first
design concepts for in-car networks can be evaluated on a
hardware platform that is based on standard components and
offers realistic performance and temporal attributes.

This paper presents an architecture for a TTEthernet end
system that allows full-duplex transmission and reception of

time-triggered, rate-constrained and best-effort traffic with
variable priority. A preemptive scheduler that is realised by an
interrupt driven approach keeps track of correct task execution.
An advanced buffer structure that shares its memory with the
attached network cores reduces expensive copy operations.
The presented architecture fully complies with the TTEthernet
specification [1] and the TTEthernet-API [4].

An extensive evaluation of the temporal attributes of the
implementation shows the achievable precision in synchroni-
sation and message processing as well as deterministic task
execution even under heavy load. Even though the architecture
is designed to satisfy the specifications of TTEthernet, it is
easily transferable to other time-triggered Ethernet protocols,
which are based on multiple prioritised message types like
Profinet [5].

The remainder of this paper is organised as follows: In
section II, the background of RT Ethernet and the TTEthernet
protocol is given and related work is presented. The concept
and architecture of the prototype platform is described in
section III. Selected details of the implementation are outlined
in section IV. Section V describes the test-bed used for
evaluation and the results for the analysed metrics. Finally,
section VI concludes and gives an outlook.

II. BACKGROUND & RELATED WORK

For in-car communication RT Ethernet approaches are still
under investigation. However, a variety of application domains
like process automation have already successfully adopted this
Ethernet technology.

A. Real-time Ethernet Variants

RT Ethernet variants can be classified in three major groups:

Token-based systems use a shared resource – the token –
to control network access. Only the owner of this token is
allowed to send messages to the network, which ensures that
no congestion emerges. In token-based networks the whole
protocol logic is transferable to host side, which allows the
use of standard Ethernet switches. The biggest challenge is
the detection and recovering of a lost token. Token recovery
directly affects the worst-case delay. A well distributed token-
based protocol is EtherCat [6] utilised in process automation.
EtherCat supports different communication media, topologies
and a redundancy concept.



Bandwidth-limiting protocols use predefined bandwidth
contingents to ensure a reliable message transmission. The
switch monitors the traffic and ensures that no client exceeds
its contingent. A further advance is the definition of bandwidth
allocation gaps (BAG). This periodical breaks between every
attempt forces each sender to maintain the artificially reduced
bandwidth. The senders do not operate synchronised, therefore
latency is not predictable but a computable upper bound exists
[7]. In aviation an established bandwidth-limiting protocol is
the avionics full-duplex switched Ethernet (AFDX) [8].

Time-Triggered RT Ethernet variants use a coordinated time
division multiple access (TDMA) media access strategy to
ensure predictable message transmission. Through synchroni-
sation, a global time base is shared among all participants. An
offline defined schedule determines the dedicated transmission
times for each node in the network. This ensures that no
congestion on outgoing linecards delays the transmission of
RT frames and thus allows transport with low latency and
jitter. The more precise the system can be synchronised,
the more accurate timings can be achieved. A popular time-
triggered real-time Ethernet protocol for industrial applications
is Profinet [5].

B. TTEthernet

TTEthernet is a time-triggered RT Ethernet extension that
focuses on the specific demands of automotive and avionic
applications. The TTEthernet specification [1] was developed
by TTTech and is currently proposed for standardisation by
the Society of Automotive Engineers [9].

TTEthernet relies on switched Ethernet. Any topology is
formed of switches that relay the messages. Redundancy is
achieved by multiple redundant channels. As usual in time-
triggered protocols it is centered around periodic cycles.
For time-triggered communication, each node is assigned to
offline configured timeslots. This coordinated TDMA based
access policy ensures predictable transmission delays without
queuing, and therefore low latency and jitter. To allow each
node to access its dedicated transmission slot, each component
has its own local clock and transmission schedule. Since a
global synchronised time across all participants is needed,
the TTEthernet specification defines a fail-safe synchronisation
protocol.

The TTEthernet synchronisation protocol defines three
roles: The synchronisation master starts the synchronisation,
the compression master calculates the global time and the syn-
chronisation client receives the global time. Synchronisation
in TTEthernet is based on Ethernet messages called protocol
control frames (PCF). Each synchronisation master sends
its PCF at a dedicated time in the cycle. The compression
master collects the PCFs of all synchronisation masters and
calculates a global time of all messages. Then, the new time
is broadcasted in a new PCF to all participants, which adjust
their local clock to the global time.

Besides the time-triggered (TT) traffic, TTEthernet defines
two other traffic classes. Rate-constrained (RC) traffic is based
on the AFDX-Protocol [8] and intended for communication

with less rigid temporal requirements. Best-effort (BE) traffic
has the lowest priority and is based on standard Ethernet.
TTEther-Networks are capable of working with hosts that
are unaware of the time-triggered protocol and thus remain
unsynchronised. Those hosts only communicate by best-effort
traffic.

RT traffic uses a content oriented addressing format, similar
to Ethernet multicast. Instead of addressing a node in the net-
work, the content of a frame is determined by the destination
address. The 48 bit destination address is divided into two
parts. The first part is the critical traffic marker. It is used to
detect RT traffic. The critical traffic ID (CT-ID) is located in
the second part. It is unique for each message in the cycle
and used to address the message in the TTEthernet schedules.
Routing decisions are based on the CT-ID.

For rate-constrained traffic, it is ensured that sufficient band-
width is available for each message (identified by its CT-ID).
To achieve this, Bandwidth Allocation Gap accounts (BAG-
accounts) are defined. BAG-accounts determine the minimum
period of time between two subsequent messages with the
same CT-ID. The application sending the RC message has
to respect the constraints of the configured BAG-account,
otherwise the message will be considered as invalid and
dropped by the switch.

The best-effort traffic in TTEthernet equals standard Ether-
net traffic. It has the lowest priority of all three traffic classes
and is relayed in idle times within the cycle. Best-effort traffic
provides no guarantee for the upper bound of latency or even
the delivery of packages.

TTEthernet is a typical time-triggered RT Ethernet variant.
Thus the concepts presented in this paper can be easily
transferred to other protocols such as PROFINET that use a
similar partitioning of traffic classes.

C. Previous & Related Work

Since RT Ethernet is a new candidate for in-car commu-
nication networks [10] compares TTEthernet and FlexRay as
state-of-the-art technology. This mathematical analysis shows
the potential of RT Ethernet based in-car backbones. Further
the simulation based analysis of network metrics [11] in real-
time Ether-networks shows the potential of real-time Ethernet
based in-car backbones.

The realisation of RT Ethernet on any given hardware is cur-
rently a very attractive field for both research and industry. In
general it can be distinguished between software and hardware
based approaches, whereas both have advantages in their en-
vironment. The development of software stacks is much more
cost efficient. In contrast hardware based approaches offer a
higher temporal precision. Most prototype implementations
rely on standard PC hardware with a RT enabled operating
system. Due to the overhead of such systems realistic scenarios
for automotive applications cannot be achieved. [12] gives
an overview of software based implementations of the time-
triggered Ethernet variant [13] developed at TU-Wien. The
commercial TTEthernet applied in this prototype builds on
these concepts.



Furthermore, in [14] the time-triggered Ethernet protocol
was also implemented in hardware by using a system on
a programmable chip and separating the protocol controller
from the host controller, which is responsible for executing the
application itself. The communication between them is realised
by using dual-port memory. It was shown by experiments, that
this implementation meets the strict timing requirements for
RT communication.

In contrast to the related concepts, the architecture presented
in this paper uses a hybrid approach based on a multicore
hardware design and a software implementation of the RT
protocol stack.

III. CONCEPT & ARCHITECTURE

For realising a prototype with reliable timings in scheduling
of message transmission and task execution, the choice of
hardware is an essential part of the concept, which has direct
influence on protocol metrics. The synchronisation process is
important for time-triggered protocols, and therefore must be
supported by the architecture. Furthermore, the bandwidth of
100 Mbit/s per port demands a memory architecture that is
able to manage high data throughput. Due to fault tolerance
through redundancy, the system has to handle transmission
and reception on multiple ports concurrently, which avoids
bottleneck behavior by design.

A. Platform
The concept is based on a highly integrated system-on-chip

design developed by Hilscher [15]. The modular design of this
platform provides four configurable communication channels
for various communication technologies like Ethernet or CAN
[16]. Each channel provides its own Arithmetic Logic Unit
(ALU), which acts as MAC (Medium Access Controller), PEC
(Protocol Execution Controller) and, especially for Ethernet,
PHY (Physical interface) and can be programmed via mi-
crocode. The application itself is executed on an integrated
200 MHz ARM9 CPU. The ALUs of all channels are able
to operate independently, even to the main ARM core and
allow processing Ethernet frames and applications in parallel.
Communication and data transfer between channels and CPU
is provided by a data switch, which replaces the AMBA
(Advanced Microcontroller Bus Architecture). The switch is
able to open up to five communication channels at the same
time. With this architecture we are able to send and receive
multiple frames on different ports concurrently, which allows
to support the TTEthernet conform fault tolerance approach.

A dedicated system time module takes timestamps of every
incoming frame and can be configured to handle time-triggered
code execution. It is clocked with 100 MHz but with an
adjustable increment in a resolution of 2−28 ns to compensate
deviation and drift relating to a system wide clock. This
precisely adjustable clock is used by the synchronisation
module to manage and maintain a stable time base.

B. Architecture
TTEthernet is an extension of the standard Ethernet proto-

col. Therefore, the prototype is built on top of the Ethernet

Fig. 1. Conceptual overview of the TTEthernet capable prototype

hardware abstraction layer (HAL) and provides portability to
any hardware, which is capable of standard Ethernet commu-
nication. To apply a RT Ethernet protocol, a couple of modules
are essential. Figure 1 depicts the concept of the TTEthernet
stack, which consists of a synchronisation module, a scheduler
and a buffer structure. The TTEthernet capable API provides
functionality and setup through a configuration module to all
applications running on the prototype.

Synchronisation module: To maintain a synchronised sys-
tem wide clock, a dedicated time synchronisation module is
necessary to constantly adjust the local time.

Contrary to the discrete master and client state-machines
specified by TTTech [2], we decided to provide a sub-module
for reception and transmission of synchronisation frames re-
spectively. By generalising the reception and computation of
protocol control frames, we have the ability to use the same
receive sub-module in all synchronisation roles. Complete
synchronisation client functionality is provided by the sub-
module. If the prototype is configured as synchronisation
master, the transmission sub-module is activated, too. This
enables each participant to down or upgrade dynamically and
allows master nodes to preserve synchronisation even in case
of an error without influencing scheduling.

Scheduler: The scheduling is needed to maintain periodic
events like task execution or sending TT messages. Further, it
has to handle external triggered events like callback tasks. This
demands a hybrid design. There are two approaches which are
known as preemptive and non-preemptive.

For non-preemptive scheduling the starting point in time as
well as the duration of an event has to be known. This mul-
tiplies the number of entries to be scheduled, unnecessarily.
Furthermore, due to the fact that scheduled tasks are imple-
mented in the application, and the unpredictable occurrence
of external events, the determination of these timings is not
reliable.

In contrast for preemptive scheduling this is not needed.
Priorities for each potential occurring event have to be defined,
building a hierarchical order, which avoids interruption of
critical tasks like TT transmission by BE events. This assumes
that every possibly occurring event has to be specified as part
of a clearly defined priority classification.

Since TTEthernet requires prioritisation and offline config-
ured events, a preemtive scheduling approach is chosen.

Buffer: The TTEthernet protocol binds every TT and RC



TABLE I
SYSTEM LOAD WITH DIFFERENT RECEIVING MODES AND FRAME SIZES

reception execution time system load at system load at
strategy per frame max. frame size min. frame size

event-based: 5.43 µs 4.4 % 89.3 %
periodical: 4.67 µs 3.8 % 76.8 %

message to a dedicated buffer. Each is arranged either as
queued or double buffer. Through a dedicated interface the
application is able to define its own buffer structures, too.

In general queued buffers are intend to handle BE and RC
traffic. By using this buffer type the message order is preserved
for transmission and reception. Contrary, double buffers are
designed to always supply the newest message to the network
interface or the applications and thus are mainly used to handle
TT traffic.

In exception, synchronisation messages which are princi-
pally marked as RC are double buffered by default to assure
that the current transparent clock is provided at all times. All
buffer types support concurrent access and provide a handler
of the current message to every application.

IV. IMPLEMENTATION

The design was implemented on the previously introduced
microcontroller.

A. Burst Behaviour & Dropping of Frames

The controller provides 32 Kbyte of memory per commu-
nication channel. In this configuration, the standard Ethernet
HAL is capable of storing 20 frames, due to overhead through
management structures and the predefined slots for full sized
frames. Combining the infrastructure of two channels doubles
the amount of frames. To ensure that critical frames are never
dropped due to full buffers through BE bursts, a dropping
algorithm has to prune the minor relevant frames.

Since the number of slots is limited, bursts of minimum
sized frames are the worst case for the system. Resulting
from propagation time and interframe gap it has to process
each frame in 6.08 µs. To reduce processing time, all received
frames are periodically fetched when no TT communication
is expected, resulting in a periodical buffer clean, too. This
period has to be configured as long as possible without the
risk of losing frames. For TT reception, the receiver acts
event-triggered to maintain a low and predictable delay for
message processing and callback execution at the cost of
speed. Through delegating send and receive attempts to the
respective communication cores, the delay is constant even
for varying frame sizes.

To give an overview of the system load with different
receiving strategies, table I shows a comparison between best
and worst case relating on frame size. Though, the load is
in linear dependency to the amount of received data, the
execution time remains constant for every strategy used by
the system.

B. Improved Scheduling

The scheduling uses an advanced interrupt controlled ap-
proach to maintain different priorities triggered by the local
system time. The system time is bound to a single delegated
FIQ (Fast Interrupt Request) to trigger execution with the
highest priority, minimum delay and maximum precision in
time. Every upcoming event is registered to the system time
module to be triggered at a specified point in time. This avoids
unnecessary CPU load in idle times and makes a classification
in micro- and macro-ticks, commonly used by scheduling
approaches, dispensable. Thus, the achieved precision in event
registration is related to the modules frequency and based
on our hardware 10 ns. Once the FIQ has been triggered,
the execution is delegated to a specified IRQ representing
the priority of the current event. Since this is a preemptable
approach, lower prioritised events are interruptible by those
with higher priority. Multiple requests with the same or lower
priority are chained and the sequence of execution is ordered in
descending priority. This also applies to the external triggered
events issued by the hybrid capability of the scheduling
algorithm.

Due to the introduced approach, the execution time of non
RT tasks has not to be estimated, which reduces the complexity
of the scheduling algorithm significantly.

C. Memory Management & Buffering

The HAL only supports standard Ethernet communication
and therefore is not able to distinguish between TT, RC and BE
frames. This demands an extension of the provided memory
organisation. Every TTEthernet buffer, even those that are
defined and created by the application through the appropriate
interface, is part of a pool, which is directly mapped to
all memory banks of the Ethernet ports. Due to the fact
that allocation and release of every frame is related to basic
memory operations performed on the data pool, this approach
avoids the usage of expensive copy operations and therefore
is able to handle the high throughput.

In matter of complexity, arrangement of buffers for each
message ID allows to transfer CPU extensive operations to
initialisation phase, which reduces the complexity of any
buffer operation executed in scheduling to O(1).

V. EVALUATION RESULTS

The test setup shown in figure 2 was built with three
prototypes and a standard PC as traffic generator connected
via a TTEthernet switch. One controller (1) was configured as
synchronisation master, the other two as clients. One client
(2) sends TT messages and the other (3) RC messages to
the master. The cycle length of the schedule for TT message
transmission was 3 ms, whereas the RC messages were defined
with a bandwidth allocation gap (BAG) of 2 ms. A standard
PC generated best-effort traffic with minimum frame size,
which was routed to every prototype to generate load. An
oscilloscope monitored the schedule of all prototypes to verify
the synchronisation status and its precision. Furthermore, every



Controller 1
Sync

Master

Controller 2 
TT-Client

Controller 3
RC-Client

TTEthernet SwitchBest-Effort
Traffic 

Generator

Oscilloscope

Sync-Frames TT-Frames RC-Frames BE-Frames

pulse on new period

Fig. 2. Overview of the test-bed used for evaluation

received frame was timestamped by each controller to trace
jitter and latency.

The analysis showed that incoming TT frames were always
received in schedule with a maximum jitter below 1 µs. The
scheduled receive window was 10 µs. During this time all other
messages are not allowed to be send, because Ethernet frame
fragmentation is not specified by TTEthernet. This proves that
even under heavy system load, scheduling of critical tasks
operates predictably and the dropping of best-effort frames
does not influence the RT behaviour. The prototypes run more
than 10,000 periods under test, where no event was executed
out of schedule nor appeared any indication that this condition
would be violated in further testing.

For rate-constrained traffic the test shows the reliable com-
pliance with the bandwidth allocation gaps. Since the media
is not reserved for RC messages, those frames can be delayed
for a maximum of a single BE frame due to a busy interface.

To evaluate the quality of the synchronisation algorithm, the
distance of the cycles of master and both clients were mea-
sured and results in a deviation below 0.5 µs. During startup
phase, the system initialises and the synchronisation process
needs to stabilise due to its two stage control algorithm. This
time can be specified as less than 2 s.

VI. CONCLUSION & OUTLOOK

RT Ethernet is a realistic candidate for next generation in-
car backbones. Therefore, realistic prototypes of RT Ethernet
based ECUs gain importance for both research and industry.

This paper presented a RT Ethernet prototype platform for
automotive applications that is able to serve traffic streams of
applications with different requirements concerning bandwidth
and timing in parallel. Due to an advanced interrupt driven
scheduling, the system is able to execute tasks, like driver
assistance, with strict respect to the configured priorities.

The evaluation has shown that micro controller based clients
can fulfill the rigid temporal requirements of RT Ethernet. Our

analysis proves, that the proposed architecture maintains its
functionality even under heavy load and is therefore suitable
for applications in safety critical environments.

The prototype is utilised in our test setups to evaluate RT
Ethernet based implementations of steer-by-wire and camera
based driver assistance.

Further work will also contain real-time Ethernet gateway
designs for established automotive technologies like CAN or
FlexRay on the same prototype hardware. In particular the
modular communication channel design supports the develop-
ment of such gateways. For applications with high demand
on computing power, for example image processing, it will
be possible to separate the communication controller from the
host by using the dual port memory as communication node
interface.

REFERENCES

[1] W. Steiner, “TTEthernet Specification,” TTTech Computertechnik AG,
Nov. 2008. [Online]. Available: http://www.tttech.com

[2] TTTech Computertechnik AG, Wien. [Online]. Available: http:
//www.tttech.com

[3] Honeywell International. [Online]. Available: http://www.honeywell.
com

[4] TTTech Computertechnik AG, “TTEthernet Application Programming
Interface,” TTTech Computertechnik AG, Dec. 2008. [Online].
Available: http://www.tttech.com

[5] PROFIBUS & PROFINET International, “Profinet,” Karlsruhe. [Online].
Available: http://www.profibus.com/technology/profinet

[6] EtherCAT Technology Group, “EtherCAT.” [Online]. Available: http:
//www.ethercat.org

[7] H. Charara, J.-L. Scharbarg, J. Ermont, and C. Fraboul, “Methods for
bounding end-to-end delays on an AFDX network,” in 18th Euromicro
Conference on Real-Time Systems, 2006.

[8] Aeronautical Radio Incorporated, “Aircraft Data Network,” ARINC,
Annapolis, Maryland, Standard 664, 2002.

[9] SAE - AS-2D Time Triggered Systems and Architecture Committee,
“Time-Triggered Ethernet (AS 6802),” 2009. [Online]. Available:
http://www.sae.org

[10] T. Steinbach, F. Korf, and T. C. Schmidt, “Comparing Time-Triggered
Ethernet with FlexRay: An Evaluation of Competing Approaches to
Real-time for In-Vehicle Networks,” in 8th IEEE Intern. Workshop on
Factory Communication Systems. Piscataway, New Jersey: IEEE Press,
May 2010, pp. 199–202.

[11] T. Steinbach, H. Dieumo Kenfack, F. Korf, and T. C. Schmidt, “An
Extension of the OMNeT++ INET Framework for Simulating Real-time
Ethernet with High Accuracy,” in Proceedings of the 4th International
ICST Conference on Simulation Tools and Techniques, 2011, to appear.

[12] P. Grillinger, A. Ademaj, K. Steinhammer, and H. Kopetz, “Software
Implementation of Time-Triggered Ethernet Controller,” in Workshop
on Factory Communication Systems, 2006, pp. 145–150.

[13] H. Kopetz, A. Ademaj, P. Grillinger, and K. Steinhammer, “The time-
triggered Ethernet (TTE) design,” in Eighth IEEE International Sym-
posium on Object-Oriented Real-Time Distributed Computing, 2005.
ISORC 2005., May 2005, pp. 22–33.

[14] K. Steinhammer and A. Ademaj, “Hardware Implementation of the
Time-Triggered Ethernet Controller,” in IFIP Advances in Information
and Communication Technology, 2007, pp. 325–338.

[15] J. Lipfert, “Technical Data Reference Guide - netX500/100,” Hilscher
GmbH, Dec. 2008. [Online]. Available: http://www.hilscher.com

[16] Robert Bosch GmbH, “Controller area network.” [Online]. Available:
http://www.semiconductors.bosch.de/


