
Concept of a V2X Application-Level Gateway with Context-sensitive
Semantic Analysis of Application Data

Sebastian Szancer
Hamburg University of Applied Sciences

Berliner Tor 7
20099 Hamburg, Germany

Email: sebastian.szancer@haw-hamburg.de

Abstract— Modern cars communicate with a variety of enti-
ties ranging from other vehicles and infrastructure, such as
traffic lights, to Internet-based services running on remote
servers. This V2X communication enables the realisation of
innovative functionality such as ”over the air” ECU soft-
ware updates, optimised navigation and route planning or
coordinated autonomous driving. It is necessary that V2X
communication is appropriately secured, especially since it
includes safety-critical communication. This can be done with
a V2X Security Gateway in the vehicle, which serves as a
proxy for vehicle-internal services communicating with the
outside world and ensures cryptographic security as well as
security on the internet-, transport- and application layer. A
central component of such a V2X Security Gateway is the
V2X Application-Level Gateway, which ensures security on the
application layer, including a context-sensitive semantic analysis
of application data. It also realises the proxy-functionality and
ensures cryptographic security. This paper presents a concept
and prototype implementation of such a V2X Application-
Level Gateway for IP-based traffic. The implementation was
evaluated with the V2X Application-Level Gateway software
run on an Intel NUC integrated in a test network representing
an internal vehicle network. In this network, consisting of
an Edgecore SDN switch and Intel NUCs and Raspberry Pis
representing vehicle ECUs, the scenario of remotely controlling
the vehicle trunk was simulated.

I. INTRODUCTION

Modern cars are part of various networks, from VANETs
(Vehicular ad-hoc networks) to the Internet, making them a
part of the ”Internet of Things” (IoT). They communicate
with a variety of entities ranging from other vehicles
(Vehicle-to-Vehicle: V2V) and infrastructure (Vehicle-to-
Infrastructure: V2I), such as traffic lights, to Internet-based
services running on remote servers. Most of this V2X
communication will probably be IP-based, although in case
of V2V or V2I communication not based on IP is also
possible. It is realised via a Connectivity-Gateway [38]
using different technologies such as Wi-Fi (IEEE 802.11),
Bluetooth, LTE or 5G. For the modern vehicle V2X
communication is essential. Some innovative functionality
such as optimised navigation and route planning (which
in case of electric vehicles may depend on charging
infrastructure), automated coordinated driving or vehicle
maintenance via ”over the air” ECU software updates
cannot be realised without V2X. With V2X conditions such
as road traffic or weather can be considered for navigation

and route planning in live-time, while ”over the air” ECU
software updates allow the fast maintenance of a great
number of vehicles without them having to go to a car
service station. V2X also plays an important role for the
realisation of autonomous vehicles.
In general communication in the automotive context is
divided into 5 domains: engine control, infotainment,
maintenance, safety electronics (e.g. ABS, airbag, seat-belt
pretensioner) and comfort (e.g. power windows) [34]. V2X
communication encompasses the infotainment, maintenance
and engine control domain, ranging from music streams to
ECU-software updates and inter-vehicle collision avoidance.
Single use cases from the comfort domain, such as setting
the car heating, could be realised as well. Although most of
the V2X communication is soft real-time, in some instances,
like the above mentioned collision avoidance, it is hard
real-time with deadlines in the milliseconds [7], [26], [44]. It
is mandatory that the V2X communication is appropriately
secured, since it encompasses safety-critical domains. This
can be done with a V2X Security Gateway [40] which is part
of the Connectivity-Gateway, see figure 1. It consists of 3

Fig. 1. Schematic: Modern car with V2X Security Gateway

components, combined in a common PAP-structure (packet
filter - application-level gateway - packet filter - structure)
[10]: 2 stateful packet filters, the first one for inbound-traffic,
the second one for outbound-traffic and an application-level
gateway, the V2X Application-Level Gateway, see figure 2,
page 2. An application-level gateway (ALG) is a proxy
which only forwards packets after controlling them on the
application-layer [10]. If the data are encrypted, the ALG

should have the necessary cryptographic functionality to
decrypt them and encrypt them again before forwarding the
data. Such security gateway solutions, while novel in the

Fig. 2. Overview: V2X Security Gateway architecture

domain of automotive security, are established concepts in
the classical IT security domain [10]. The stateful packet
filters offer security on the internet- and transport layer. The
V2X Application-Level Gateway ensures application-level
security including a context-sensitive semantic analysis of
application data. It also realises the proxy-functionality
and ensures cryptographic security. Additionally it allows
role-based access to in-vehicle resources and bandwidth
control of V2X traffic. The aim of this paper is the
development of a concept and prototype implementation of
such a V2X Application-Level Gateway. Also the transfer
of some of the functionality to the cloud, where more
resources like computing power and memory are available,
is discussed. This paper is organised as follows: section II
gives an overview of related work and emphasises the
contribution of this paper, in section III the concept of a
V2X Application-Level Gateway is presented, preceded
by a requirements analysis, in section IV a prototype
implementation is presented and evaluated and section V
concludes this paper and discusses future work.

II. RELATED WORK
This section gives an overview of related work covering

security gateways and security proxies. With the increasing
interconnection modern vehicles are undergoing the same
development as manufacturing is with its concept of
”Industry 4.0”, which results in an integration of both in
the ”Internet of Things” (IoT). Thus not only work from
the automotive domain is presented, but also work from
the industrial domain, the IoT and the traditional Web.
With modern vehicles being integrated into the IoT, the
traditional distinction between the automotive and IoT
domain may become less reasonable, with the automotive
domain becoming a sub-domain of the IoT. But since special
properties and constraints apply to the automotive domain
compared with other IoT devices, it remains a distinctive
sub-domain and thus is treated separately in this work.

A. Automotive Security Gateways

Most of the work covering automotive security gateways,
focuses exclusively on securing the communication of the
in-vehicle network, like the work of Pese et al. [32]. In [32]
Pese et al. present the concept and prototype implementation
of an automotive firewall to prevent inter-domain attacks
in an Ethernet-based in-vehicle network with a domain

architecture. In a domain architecture the network is divided
into several domains like infotainment, engine control etc.
and each domain is connected to the rest of the network via
a domain controller. The domain controllers are connected
via an Ethernet-backbone. The automotive firewall is to
prevent attacks from one domain against devices of another
domain. It consists of a stateless packet filter which filters
the Ethernet-traffic according to configured rules and a
stateful packet filter which filters the IP/TCP- and UDP-
traffic according to configured rules. The stateless packet
filter is implemented in hardware for performance reasons,
while the more complex stateful packet filter is implemented
in software. The stateless packet filter is located between
the network domain segments controlling all inter-domain
Ethernet-traffic. The stateful packet filter is implemented on
every domain controller filtering incoming traffic that passed
the stateless packet filter. The automotive firewall offers
security on the link- and transport layer. To additionally
offer security on the internet-layer the filtering of IP-traffic
according to configured rules could also be implemented in
a stateless packet filter.
Of the work covering V2X security most focus on the
realisation of cryptographic security of V2X communication
[42], e.g. in the context of ECU software updates [21],
or on security issues in VANETs like authentication
[12], [20], [17], Denial-of-Service (DoS) attacks [6],
[45] or misbehaviour detection [36], [18] in VANETs.
Misbehaviour detection here means the detection of network
nodes spreading false information in the network due to
either malfunction or malicious intent, in the context of
VANETs e.g. falsely reporting a traffic accident. Few papers
focus on securing V2X communication from the perspective
of a vehicle built-in security gateway, which offers more
functionality than decrypting and encrypting V2X traffic
and checking certificates and signatures. One of them is
the work of Bouard et al. [8] presenting a proxy securing
the communication between CE (Consumer Electronics)
devices and ECUs of the in-vehicle network, which is
realised via the proxy. The purpose of this security proxy is
decoupling the CE devices from the ECUs and ensuring that
only authorised devices can communicate with the ECUs.
The security proxy communicates via a secure IP-based
middleware, e.g. SEIS [16], with the ECUs, only passing on
messages from authenticated CE devices to them. In [45]
Yang et al. describe an intrusion detection system (IDS)
based on machine learning for V2X communication to detect
DoS attacks, port scans, brute force attacks (presumably on
cryptographic security) and some web-based attacks (SQL
injection, cross-site scripting (XSS)). The use of different
machine learning algorithms is evaluated. It was shown that
generally with tree-based algorithms a higher accuracy and
detection rate was achieved than with K-nearest neighbour
and support vector machine approaches.
The contribution of this work is the proposed
V2X Application-Level Gateway for securing V2X
communication. Unlike [8] it is not limited to CE devices
and offers more functionality than V2X security gateways

2

or proxies presented to date. In addition to ensuring
cryptographic security and offering proxy functionality
decoupling in-vehicle ECUs from the outside world,
it also secures V2X communication on the application
layer, including a semantic analysis of application data,
uses a role-based access approach with ACLs to deny
unauthorised access to in-vehicle resources via V2X and
allows bandwidth control of V2X traffic. Application-level
security functionality from IDS solutions like [45] could
be incorporated into the V2X Application-Level Gateway.
The V2X Application-Level Gateway is complementary to
packet filter solutions like [32] securing the internet- and
transport layer. Together they offer comprehensive security
of V2X communication.

B. IoT and Industrial Security Gateways and Proxies

When it comes to gateways or proxies in the IoT or
the industrial domain the focus has often been on protocol
translation ensuring the interoperability of heterogeneous
devices or systems. Also gateways for coordination or data
integration, like a gateway for making vehicle sensor data
available for processing in the cloud [22] are covered.
Increasingly however, the issue of security is also being
addressed. An example is the IoT gateway presented in
[29] using TLS for cryptographic security. With the use
of TLS the data is encrypted and an authentication of
peers is possible. The IoT security proxy presented in [11]
uses symmetric-key algorithms for the encryption of data
exchanged between the proxy and other devices and for
the authentication of these devices thereby addressing cryp-
tographic security. Symmetric-key algorithms are used for
simplicity and performance reasons. Additionally the proxy
uses Access Control Lists (ACLs), which specify the set of
operations that each group is allowed to perform. To perform
an operation protected by an ACL, a requester must include a
certificate in his request, proving he is a member of a group
allowed to perform that operation. The industrial security
proxy described in [41] also restricts access to resources, e.g.
an operation, using a role-based approach. It also implements
a rudimentary form of semantic analysis of application data:
if a command is sent to a device via the security proxy, it
checks if that command is in the set of commands that the
device is able to execute at all and if not, drops the invalid
command. Another useful feature is bandwidth control, e.g.
implemented in the proxy described in [43]. In this case
bandwidth is managed by arranging all network streams in a
so called stream hierarchy, which is represented by a graph.
Network streams are represented by the leaf nodes of this
graph. The internal nodes implement a certain bandwidth
distribution technique, e.g. ”Mutex”, which ensures that at all
times at most one of its children is assigned with bandwidth.
Other distribution techniques are ”Priority”, assigning band-
width according to the priorities of its children and ”Weight”,
assigning bandwidth by distributing the available bandwidth
between all its children according to defined weights of
streams. Another feature that can enhance security is virtuali-

sation. The IoT gateway ”LEGIoT” presented in [27] is using
Docker (https://www.docker.com/) for the virtualisation of
all its components via Docker containers. This allows a
fast building process, instantiation, easy management and
isolation of components giving the system flexibility. Vir-
tualisation comes at the cost of increased resource demand,
e.g. memory or CPU performance, in the case of [27] to run
the Docker Engine realising the virtualisation on the system.
Yet another interesting feature is context-awareness like in
the IoT-eHealth gateway proposed by [2]. The definitions
of ”context” and ”context-awareness” used by [2] are from
[1], with context being any information that can be used
to characterise the situation of an entity (e.g. an object)
and context-awareness being the use of context (e.g. by an
application) to provide relevant information or service. In
case of the V2X Application-Level Gateway the vehicle’s
state and the environment could be context. An example of
using learning-based anomaly-detection in an IoT security
gateway is [28], where the gateway is part of a distributed
system utilising federated learning. Each security gateway
acts as a local access gateway to the Internet for a number
of IoT devices. It monitors the communication of the IoT
devices and detects anomalies based on anomaly detection
models it trains locally. The local models are aggregated to
a global detection model. Due to the diversity of IoT devices
the models are device-type-specific (e.g. camera, smart plug,
smart coffee machine). A general criterion for classifying
IoT devices is the complexity and variance of their network
traffic [19]. The above mentioned security measures from the
IoT and industrial domain are applicable in the context of
an automotive V2X Application-Level Gateway. Summing
up, in addition to the proxy-functionality, cryptographic
security and application layer security including the semantic
analysis of application data that is: ACLs realising role-
based access to resources, a context-awareness of the system,
which is useful for the semantic analysis of application data,
bandwidth control, anomaly-detection and virtualisation.

C. Web Security Gateways and Proxies

In general, web security gateways and web security
proxies offer similar functionality to that of IoT or industrial
security gateways and proxies: the proxy-functionality,
encryption, application layer security [24], [9], which in this
case is limited to Web protocols like HTTP [25], bandwidth
control [5] and the semantic analysis of application data
[39]. The web security proxy presented in [39] analyses the
application data and classifies it as either valid or invalid
according to predefined rules, e.g. ”the data-type must be
int”. The set of rules can easily be extended. Only if the
data is valid the HTTP request or response is forwarded.
An additional useful feature of web security gateways
and proxies, is logging [25]. Since modern vehicles are
both consumers and providers of web services, the above
mentioned functionality is applicable in the context of an
automotive V2X Application-Level Gateway.

3

III. CONCEPT

In this section the concept of the V2X Application-
Level Gateway is presented, beginning with a requirements
analysis followed by the architecture derived from it and a
description of the aspect of semantic analysis. A discussion
of a partially cloud-based approach to the V2X Application-
Level Gateway concludes this section.

A. Requirements

The requirements can be divided into functional- and
performance requirements. For the V2X Application-Level
Gateway the requirements result from its task to secure
the V2X communication. The following requirements have
been identified:

Functional requirements:

1) Providing cryptographic security: ensuring
confidentiality, integrity and authenticity of V2X
traffic to protect the privacy of vehicle- or user-
related data and the vehicle itself from attacks and
manipulation. For the communication between the
V2X Application-Level Gateway and the outside
world stronger encryption can be used, while the
communication between V2X Application-Level
Gateway and vehicle internal services can be secured
by weaker encryption to relieve ECUs.

2) Providing application layer security: controlling data
on the application layer according to predefined rules,
including a context-sensitive semantic analysis (see
section III-C), which requires the V2X Application-
Level Gateway to be aware of all in-vehicle
services using V2X to load the respective security
configurations (containing the rules etc.). This
enhances the protection of the privacy of vehicle- or
user-related data and the vehicle itself from attacks
and manipulation.

3) Providing proxy-functionality: serving as a proxy
to vehicle-internal services communicating with the
outside world to decouple the in-vehicle network from
external communication partners.

4) Realising role-based access to resources via ACLs to
prevent unauthorised access.

5) Allowing bandwidth control of V2X traffic: dividing
bandwidth among applications (like [43]) to optimise
vehicle performance in every situation, e.g. by
prioritising critical services if necessary.

6) Support of IP-based application layer protocols (e.g.
HTTP), since most, if not all V2X traffic will probably
be IP-based.

7) Configurability of the system, e.g. updating/adding
new rules for semantic analysis or bandwidth
control to facilitate maintenance and ensure optimum
performance over a long product life cycle.

8) Logging functionality to facilitate maintenance.

Performance requirements:

1) Hard real-time capability with deadlines in the
milliseconds (<10 ms) in case of hard real-time V2X
communication such as collision avoidance. For non
real-time V2X traffic the end-to-end delay is in the
range of 100 ms to >1s [7], [26], [44].

2) Sufficient throughput for all V2X traffic (throughput
for V2X applications is in the range of 5 Kbps to
700 Mbps and ranges from 10 to 80 Mbps for most
applications [7], [26]).

B. Architecture

The architecture of the V2X Application-Level Gateway
was developed based on the requirements identified in sec-
tion III-A, the concept of service-oriented communication
and the general best-practice application-level gateway soft-
ware architecture described in [37]. The architecture of
[37], see figure 3 (page 5), reifies several design patterns
and is extensible. It decouples input from output (Router
pattern), service initialisation from the tasks performed once
the service is initialised (Acceptor and Connector patterns)
and event demultiplexing and event handler dispatching from
services performed in response to events (Reactor pattern).
Connection requests or data, in an automotive context from
either vehicle-internal services or external services, are re-
ceived at the communication endpoints. In case of a connec-
tion request the Reactor notifies the Acceptor, which then
establishes the connection from the service to the application-
level gateway. The Connector is used to proactively establish
connections from the gateway to services. In case of data
the Reactor notifies the Input Handler, which then receives
the data, consults the Routing Table and requests the Output
Handler to forward the data to the destination. There can
be multiple Input Channels and Output Channels, e.g. one
for each connection. The Input Handler and Output Handler
provide proxy functionality to services communicating via
the application-level gateway and thus the architecture meets
the functional requirement 2). This base architecture was
extended by several components to meet all requirements
defined in section III-A, see figure 4 (page 5). The ad-
ditional components provide the entire security functional-
ity, whereas the base architecture components provide the
basic communication functionality. The Encryption/Decryp-
tion Components for inbound and outbound traffic provide
cryptographic security, meeting requirement 3). For ensuring
cryptographic security EVITA HSMs[3] can be used in
the V2X Application-Level Gateway. The Access Control

4

Fig. 3. Overview: Best practice Application-Level Gateway Software
Architecture

Component manages the ACLs realising role-based access
to resources, meeting requirement 5). A message is only
forwarded if it is valid according to the ACLs. An Input
Handler and Output Handler form a connection between
a service provider and consumer. Each connection has a
service-specific Analyzer Component controlling the applica-
tion data according to predefined rules, including a context-
sensitive semantic analysis which meets requirement 4). A
message is only forwarded if it is semantically correct. The
Context Module holds the context required for the analysis,
see section III-C. The Analyzer Components have to support
all relevant IP-based protocols, meeting requirement 1). This
can be achieved with exchangeable protocol-specific sub-
components for the Analyzer Component, each supporting
an IP-based application protocol, e.g. HTTP. The Connection
Manager manages all (active) connections. The Bandwidth
Control Component allows to manage the bandwidth of V2X
traffic via the Connection Manager, according to certain
distribution techniques, meeting requirement 6). With the
Logging Component, which logs the activity of the other
components, requirement 7) is met. Via the Management
Component the Analyzer Components, Context Module, Ac-
cess Control Component, Bandwidth Control Component
and the Logging Component can be configured, meeting
requirement 8). So the developed architecture meets all
functional requirements identified in section III-A. Since
each message is sequentially processed by a constant number
of components and additionally a parallel processing of
messages is possible with multiple parallel channels, e.g. for
real-time traffic and the input is decoupled from the output,
the architecture can also meet all performance requirements
defined in section III-A.
As already mentioned, the V2X Application-Level Gate-
way has to be aware of all vehicle-internal services using
V2X by having access to a central vehicle service registry
containing those services . The general issues of service
registration and discovery are beyond the scope of the V2X
Application-Level Gateway and thus only briefly described
in the context of updating its list of V2X services. Each
vehicle internal V2X service provider has to register with a

Fig. 4. Overview: V2X Application-Level Gateway architecture

service registry. An external service consumer can then look
up this service provider and they can communicate via the
V2X Application-Level Gateway, see figure 5. Conversely,

Fig. 5. Communication between vehicle services and external services

an external service provider registers with a service registry
and a vehicle internal V2X service consumer can look it
up. Additionally, the vehicle internal V2X service consumer
has to register with the vehicle service registry, so that with
each registration of either a vehicle internal V2X service
consumer or a vehicle internal V2X service provider with the
vehicle service registry, the list of V2X services of the V2X
Application-Level Gateway is updated so that the respective
security configuration (containing the rules for analysis etc.)
can be loaded.

C. Semantic Analysis

In this work the semantic analysis of data is defined as
checking the conformity of syntactically correct data with a
set of semantic rules. The data are classified as semantically
correct if they are in conformity with the given semantic
rule set. This paper defines 2 classes of semantic rules:
structural rules and content-related rules. Structural rules
refer to properties like payload size or data type, while
content-related rules refer to the application-specific meaning
of data. E.g. the string ”Hamburg” is a semantically correct

5

destination for the navigation system, while the (syntactically
correct) string ”Asdf” is not. In this case the content-related
rule is, that the string has to be in a defined set of known
destinations. Another example would be a message, that
is expected to contain the part of a software update. One
structural rule for such a message is, that its payload size
is in a specific range of bytes (for the last part of the
update this range can be different, since the last part can
possibly be only a few bytes). If checking the payload size
finds it is only a few bytes (and it is not the last part
of the update), the message will be classified as invalid
and the system will react accordingly, probably dropping
the message. A semantic rule can be context-sensitive or
context-insensitive and either stateful or stateless. A general
definition of context is any information that can be used to
characterise the situation of an entity (e.g. an object) [1].
In the case of a vehicle, the context is the vehicle’s state
and possibly also the state of its environment (e.g. traffic,
weather). In the examples above, the semantic correctness
is independent of the context and therefore the rules are
classified as context-insensitive. The context can be modelled
with different degrees of complexity and levels of abstraction
depending on the use-cases requiring context. For example
for this paper the modelling of the vehicle’s engine with
a simple state machine consisting of only the two states
”DRIVING” and ”STOPPED” is sufficient, while other use-
cases might require a modelling with distinct speeds (e.g. all
speeds in a range from 0 km/h to 120 km/h with a resolution
of 2 km/h). Generally, there are enough cases where the
semantic correctness depends on the context and thus context
awareness is necessary for a semantic analysis. The following
is an example for the use of context-sensitive rules. Figure 6
shows state machines describing the correct behaviour of a
vehicle’s trunk and engine. For better clarity, only the valid
state transitions, excluding self-transitions, are depicted. The

Fig. 6. Simple state machines describing the correct behaviour of a vehicle
trunk and engine

command to lock the trunk (”Lock”) is in the set of known
commands, but is semantically incorrect if the trunk is open
(state ”OPEN”). For a semantic analysis in some cases it may
not be enough to know the state of one component, e.g. the

trunk, but rather the states of a composition of components,
e.g. the engine and the trunk. The command to open the trunk
(”Open”) for instance is semantically incorrect, regardless of
the state of the trunk, if the vehicle is driving (engine state
”DRIVING”). A context-sensitive semantic analysis can be
realised using finite state machines (FSMs). A system (e.g.
a vehicle trunk) can be modelled as an FSM consisting of
states and transitions, which are triggered by events from
an alphabet. In the case of the vehicle trunk the events
represent commands such as ”Open” or ”Close” from a
defined set of commands. The general idea of a context-
sensitive semantic analysis is to check if an event triggers
a transition in the given state of the system or not (with
not triggering a transition being equivalent to transitioning
to an error state). Events triggering a transition are classified
as valid, i.e. semantically correct and events not triggering a
transition are classified as invalid, i.e. semantically incorrect.
For a system modelled with a single FSM this can be done
by extending it, adding a transition for every element in the
alphabet in each state and a ”true” (T) and ”false” (F) state,
see figure 7, where a transition for event a (check a) and
a transition for event b (check b) is added in both state A
and state B. The alphabet is also extended by one additional
event for each event in the original alphabet, with every
new event being equivalent to an event from the original
alphabet (e.g. ”check a” and ”a”). In every state each of the
new events (here: check a and check b) triggers exactly one
transition ti from the new transitions added to the state. The
transition ti either transitions to the ”true” state or ”false”
state, depending on whether the original event (here: a or
b) equivalent to the new event triggering the transition ti
(here: check a or check b), triggers a transition in that state
itself. E.g. if event b triggers a transition in state A, then the
new transition in state A triggered by check b transitions to
”true” state. The transition in state A triggered by check a
transitions to ”false” state if event a triggers no transition in
state A. This way for every event it can be checked whether

Fig. 7. Extending an FSM to perform a context-sensitive semantic analysis

it triggers a transition to ”true” state or ”false” state in any
state, i.e. whether it is semantically correct or incorrect in
that state. Naturally, this check operates only on a subset of
the extended alphabet, i.e. the events added to the original
alphabet (here: check a or check b). For an FSM where s is
the number of states, t the number of transitions and n the
number of events in the alphabet, after the extension there

6

are s + 2 states, 2 ∗ n events in the alphabet and t + s ∗ n
transitions. The increase in transitions is the most significant,
but with ”s∗n” it depends only on the number of states and
the size of the alphabet. So in general, in a system modelled
with a single FSM, an event e is semantically correct, when
the system FSM is in a certain state X (e.g. A or B) in which
event e triggers a transition, which can be expressed as a
Boolean expression: S(e): (FSM == A) OR (FSM == B).
The semantic correctness of events in a system (e.g. a vehicle
trunk) can depend on the state of one or more other systems
(e.g. the engine). In this case the first is called the dependent
system and the latter the affecting system(s). E.g. the event e
in a dependent system FSM1 with an affecting system FSM2

is valid when the dependent system FSM1 is in a state A
and the affecting system FSM2 is in a state C. The Boolean
expressions for the two separate systems are:
S1(e): FSM1 == A and S2(e): FSM2 == C
which combined results in the Boolean expression for the
semantic correctness of event e:
S(e): S1(e) AND S2(e) = (FSM1 == A) AND (FSM2 == C).
The affecting systems can either affect the dependent system
independently of each other, or interdependently. Affecting
the dependent system independently of each other means that
for evaluating the semantic correctness of an event in the
dependent system the state of every affecting system can be
considered separately. The semantic correctness of an event
e in a dependent system FSM1 with the affecting systems
FSM2, ... FSMN can be evaluated with Boolean expressions
of the form:
S(e): S1(e) AND / OR S2(e) ... AND / OR SN(e) where Si is a
Boolean expression referring exclusively to FSMi. In contrast
to this, with affecting the dependent system interdependently,
at least one sub-expression Si does not exclusively refer to
FSMi, but refers to at least 2 systems FSMi and FSMj with
i 6= j. An example would be the following expression:
S(e): ((FSM1 == A) AND (FSM2 == C)) OR
((FSM1 == B) AND (FSM2 == D))
Also, with interdependently affecting systems the number
of sub-expressions Si does not have to equal the number
of systems FSMi. In case of a dependent system with in-
dependently affecting systems the context-sensitive semantic
analysis can be realised analogously to the single system
case using extended FSMs. The dependent system FSM
is extended as described above. The FSM of an affecting
system is extended analogously, see figure 8. The alphabet
is extended by the alphabet of the dependent system and a
transition for every element in the alphabet of the dependent
system is added in each state, as well as a ”true” state and
”false” state. This is done for all independently affecting
systems. In the example in figure 8 events a and b in the
dependent system FSM1 are valid when the affecting system
FSM2 is in state C and when FSM2 is in state D, only event
a is valid, while event b is invalid. This way for every event
in the dependent system it can be checked whether it triggers
a transition to ”true” state or ”false” state in any state of any
affecting system, i.e. whether it is semantically correct or
incorrect in the context of the affecting systems. Checking

Fig. 8. Extending an FSM for the context-sensitive semantic analysis of
a dependent system

the context-sensitive semantic correctness of an event with
multiple extended FSMs (one for each affecting system),
instead of one big FSM combining all affecting systems,
facilitates maintainability and extensibility. Instead of having
to use the same one big FSM representing the entire context,
the context can be split into modules and different dependent
systems can use different affecting system FSMs, namely
only the ones they need. It is still possible for different de-
pendent systems to share the same affecting system FSM, as
long as it is extended for each of the dependent systems and
multiple extension is possible. In case of interdependently
affecting systems it is not possible to use separate FSMs
for the affecting systems and instead the cross-product has
to be used. In the example in figure 9 events e and f in the
dependent system FSM3 are valid when the affecting system
FSM1 is in state A and FSM2 is in state C or when FSM1
is in state B and FSM2 is in state D:
S(e): ((FSM1 == A) AND (FSM2 == C)) OR
((FSM1 == B) AND (FSM2 == D))
This interdependence on the semantic correctness of events
e and f requires the use of the cross-product of the affecting
systems FSM1 and FSM2. This cross-product can now be
extended analogously to the previous cases: The alphabet
is extended by the alphabet of the dependent system and a
transition for every element in the alphabet of the dependent
system is added in each state, as well as a ”true” state and
”false” state. This way for every event in the dependent

Fig. 9. Extended FSM cross product for the context-sensitive semantic
analysis of a dependent system

system it can be checked whether it triggers a transition to
”true” state or ”false” state in any state of the cross-product

7

of affecting systems, i.e. whether it is semantically correct
or incorrect in the context of the affecting systems.
For a correct analysis the V2X Application-Level Gateway
has to get the current states of all relevant components. This
comes with the general problem of temporary inconsistency
between the context state as perceived by the gateway and
the actual context state, due to the propagation delay of
state changes (see figures 10, 11). The context update in the
V2X Application-Level Gateway can generally be realised
with 2 different methods: either the gateway is notified
whenever a context state change occurs (see figure 10), or
it proactively requests the current state (see figure 11).
The request can be sent either periodically, or each time
a certain event occurs (”event-driven”). E.g. the arrival of
data for a context-sensitive semantic analysis could be such
an event. So there are 3 different approaches to compare:
context notifications, periodic context requests and event-
driven context requests. To identify the best approach they
are compared based on 3 criteria: their contribution to the (in-
vehicle) network load, the effort of an efficient implementa-
tion and their potential to alleviate the problem of temporary
inconsistency under certain assumptions. Although solving
the problem of temporary inconsistency is not a task for
the V2X Application-Level Gateway and ultimately every
ECU itself decides for every received message if it will be
processed or not, the possibility of alleviating the problem
under certain realistic assumptions shall be discussed. The
contribution of the context update to the network load of
the in-vehicle network depends mainly on the size and
frequency of the notification- and request/response-messages.
The size is constant for all messages, but the request ap-
proaches come with an additional message compared to
the notification approach. And with the event-driven context
requests approach the frequency of request/reply-messages
could be significantly elevated by an attacker by sending
a great number of messages to the V2X Application-Level
Gateway. Since for every received message it sends a request
and receives a reply this would result in unpredictable
significantly higher network load. Whereas with the periodic
request approach and the notification approach even if the
frequency is high, the network load is a priori known. So
when it comes to the contribution to the network load, the
notification approach is preferred, while the event-driven
request approach can be ruled out as an alternative due to
its vulnerability. When it comes to the effort of an efficient

Fig. 10. Inconsistency of context state with notification

implementation again the notification approach is preferred,

since it can be implemented directly, while for the periodic
request approach optimum cycle times have to be identified
first. In practice a state change of the context often does not

Fig. 11. Inconsistency of context state with request on demand

happen instantly at a single point in time, but takes a certain
amount of time (tdS), e.g. the opening or closing of a vehicle
trunk. After a state change the state usually stays constant for
at least a certain amount of time (ts const), before further state
change is possible. Under these assumptions the problem of
temporary inconsistency can be avoided with the notification
approach, if the propagation delay of the notification (t notify)
is smaller than the time it takes for the state change (tdS), see
figure 12, page 9. At the beginning of a state change (t1) a
notification with the known time of completion of the state
change (t3) is sent to the V2X Application-Level Gateway.
When it arrives at the V2X Application-Level Gateway (t2)
with a delay of t notify, the gateway can synchronise its state
at t3 with the context. In case the successful completion
of a state change cannot always be guaranteed, a second
notification sent at t3 to the V2X Application-Level Gateway
is needed to avoid inconsistency. This second notification
acknowledges the successful completion of the state change
at t4. The analysis of data arriving after an expected state
change (t3), but before the acknowledgement of the success-
ful completion of the state change (t4), has to be delayed until
the acknowledgement arrives and the state of the context
is known certainly. This way a temporary inconsistency
is avoided and all data can be analysed with the correct
context state. For this approach a clock synchronisation of the
V2X Application-Level Gateway and the context module is
necessary. Whether avoiding temporary inconsistency at the
cost of clock synchronisation is worth the effort depends on
how critical the effect of allowing temporary inconsistency is
on the in-vehicle network and the ECUs directly affected by
it. With temporary inconsistency, messages arriving shortly
before and after a context state change are forwarded by
the V2X Application-Level Gateway to the destination ECUs
even if they are invalid. These invalid messages contribute
to ECU- and network load. Whether this load is significant
depends on the size and frequency of the invalid messages in
combination with the frequency of state changes. For many
cases, like the remote trunk control described above, it is safe
to say that the negative effects of temporary inconsistency are
negligible. Since it is impossible to solve the inconsistency
problem using the periodic request approach because it
would have to send a request at every state change, which
is impossible to predict, again the notification approach is

8

Fig. 12. Inconsistency with non time-discrete state changes

preferred. So under the criteria of contribution to in-vehicle
network load, the effort of an efficient implementation and
the potential to alleviate the problem of temporary incon-
sistency the notification approach is preferable for realising
context updates and therefore implemented in the V2X
Application-Level Gateway.
In any vehicle security architecture the V2X Security Gate-
way is only the first line of defence. The semantic analysis
of data, e.g. the command to open the trunk, can not only
be performed by the V2X Application-Level Gateway, but
additionally by ECUs of the in-vehicle network e.g. a domain
controller, see figure 13. In this case the ECU has to be able
to decrypt the data prior to analysis. When a semantic analy-

Fig. 13. Simple example of distributed semantic analysis in a vehicle

sis of the same data is performed in multiple components, it
should be distributed optimally, where optimally depends on
balancing security and performance. For maximum security
there should be as much redundancy in the analysis in
multiple components as possible. This way the failure of
a compromised component can be compensated. On the
other hand the effect of the analysis on a component’s
performance has to be taken into account. For instance if
the V2X Application-Level Gateway is already processing a
lot of traffic, for performance reasons the semantic analysis
performed by it could be limited to a general analysis on

higher levels of abstraction, e.g. checking the data types,
while a more specific, e.g. context-sensitive analysis would
be performed in an in-vehicle ECU. So for performance rea-
sons an interlocking of the analysis in multiple components,
which still covers the entire semantics of the data, but with
little or no redundancy could be preferred.

D. Cloud-based Approach

The V2X Application-Level Gateway does not necessarily
have to be deployed as one component in the vehicle. Instead,
some functionality could be transferred to the cloud, see
figure 14 (page 10), to relieve the V2X Application-Level
Gateway component built into the vehicle. In order to
keep the delays of the direct V2V and V2I VANET
communication low, it would still be entirely handled by
the component built into the vehicle. But all Internet-
based V2X communication could be handled by the
cloud-based component. The vehicle-based component
would only communicate with the cloud-based component
over a cryptographically secured link and its only tasks
regarding Internet-based traffic would be handling the
encryption and the mapping of external addresses to vehicle
internal addresses. The remaining functionality of the V2X
Application-Level Gateway, like application layer security
or access control, would be transferred to the cloud, where
a lot more resources like memory and computing power are
available than in a vehicle. Apart from being able to devote
more resources to the transferred tasks, another benefit is
cutting costs by having cheaper devices built in the vehicles
and deploying multiple cloud-based V2X Application-Level
Gateway components on one server. With one server
handling multiple vehicles the data integration, which is a
necessary step for e.g. a comprehensive ”big data” analysis,
becomes easier. A downside is the dependency of the
vehicles on the cloud infrastructure.

IV. PROTOTYPE AND EVALUATION

In this section the developed prototype implementation
of the V2X Application-Level Gateway is presented and
evaluated.

A. Implementation

The prototype implementation of the concept presented
in section III focuses on providing application layer security
and thus offers the following functionality: it serves as a
proxy for V2X services, allowing TCP-based communication
between vehicle-internal services and external services and
performs a context-sensitive semantic analysis of application
data according to predefined rules. While being aware of
the vulnerabilities of TLS [13], to offer some degree of
cryptographic security, SSL (with openssl [30]) is used for
securing communication over the V2X Application-Level
Gateway. To facilitate V2X communication over the internet,
the HTTP protocol is supported, which combined with SSL
gives HTTPS. Since a thorough context-sensitive semantic
analysis is always application-specific, i.e. tailored to a

9

Fig. 14. Cloud-based V2X Application-Level Gateway

specific application, it was implemented exemplary for a
service remotely controlling the vehicle trunk via commands
such as ”open” or ”lock”. The prototype implementation
was written in C++ with the following libraries being
used: the TCP socket programming, SSL and HTTP
implementation was done with the POCO libraries [33], for
reading configurations from XML files the pugixml library
[35] was used and serialization was realised with the cereal
library [14].
A general overview of the prototype implementation’s
key elements realising the main functionality is depicted
in figure 15. A CustomSocketAcceptor, derived from

Fig. 15. Prototype implementation overview

POCOs SocketAcceptor class, accepts incoming connection
requests, e.g. from a remote trunk control client and creates
a Connection upon accepting, to handle the accepted
connection. Via an SSLSocketConnector an SSL connection
to the remote peer, e.g. a remote trunk control server, is
proactively established (”Connector-Acceptor Pattern”).
The CustomSocketAcceptor and Connection are called
by a POCO SocketReactor whenever a new connection
request or application data arrive to handle it (”Reactor

Pattern”). Upon creation, the Connection is configured by
the ConnectionManager, which uses configured factories
to create the appropriate objects (”Factory Pattern”). A
Connection consists of a CompositeBuffer for incoming
traffic and a CompositeBuffer for outgoing traffic, an
SSLConnectionHandler for incoming traffic and an
SSLConnectionHandler for outgoing traffic writing to
and reading from the buffers and an analyzer module for
incoming traffic and an analyzer module for outgoing traffic,
see figure 17 (page 11). A CompositeBuffer consists of
multiple modules, see figure 16: a simple buffer module
containing the data accessible via an interface (IBuffer), a
module for controlling the read- and write-indices of the
buffer module and a module for fill-level control of the
buffer. The buffer module can be protocol-specific and is
exchangeable depending on the application protocol required
for the connection, e.g. for HTTP the HTTPPacketBuffer can
be used, while the remaining modules of the CompositeBuffer
can be used independently of the application protocol.
Components writing to and reading from a CompositeBuffer

Fig. 16. UML class-diagram: CompositeBuffer

do not have to manage the read- and write-indices
themselves. Instead, the access method (e.g. FIFO) is
implemented in the BufferAccessIndexControl module
(implementing the IBufferAccessIndexControl interface),

10

which controls how the buffer module (implementing the
interface IBuffer) stores the data. The CompositeBuffer
accesses this data via the IBuffer interface using the
indices from the BufferAccessIndexControl module. This
modularisation facilitates flexibility and code re-use. The
SSLConnectionHandler for incoming traffic writes the
data to the CompositeBuffer, which notifies the analyzer
module whenever it transitions from empty to not-empty
and vice versa or from not-full to full and vice versa. The
analyzer module performs its analysis and if the data is
valid it orders the SSLConnectionHandler for outgoing
traffic to read the data from the CompositeBuffer and send
them to the destination. For traffic going the other way
round, the Connection works analogously. The analyzer

Fig. 17. Connection over V2X Application-Level Gateway

module has to implement the interface IAnalyzer with
the ”analyse”-method (signature: ”bool analyse(input)”)
allowing the integration into a Connection and can be
tailored to a specific application. Generally it consists of a
set of rules and a check if the received data is valid or not,
according to the defined set of rules. These rules can apply
to the packet as a whole (e.g. size of the packet), the header
or the payload. The signature of a rule looks like this:
”bool isValid(input)” and multiple rules can be combined
in an arbitrarily complex Boolean function. For an analysis
of a (protocol-specific) header or the (application-specific)
payload a protocol- and application-specific extractor
module for extracting the relevant information from the
packet in the buffer is necessary.
For a context-sensitive semantic analysis as described in
section III-C the analyzer module has to know the vehicle’s
current state at all time. In this prototype implementation
the vehicle state is decomposed into separate subsystem
states: the engine state and the trunk state. The V2X
Application-Level Gateway has a ContextModule for every
subsystem holding the subsystem’s current state, see
figure 18 (page 12). It is notified of every state change
in any of the subsystems, so that the ContextModules
always hold the correct states. A ContextModule models
the state as a finite state machine (FSM) using an efficient
implementation of the state pattern [31]. In this state pattern
implementation each state of an FSM is a separate struct
derived from a common base struct, see listing 1. The

change of states is realised with the placement operator
new.

Listing 1. State pattern example: vehicle trunk

s t r u c t I T r u n k S t a t e {
/ / P r o c e s s t h e command ” un lo ck ” .
v i r t u a l vo id s i g n a l U n l o c k () = 0 ;
/ / P r o c e s s t h e command ” l o c k ” .
v i r t u a l vo id s i g n a l L o c k () = 0 ;
/ / P r o c e s s t h e command ” open ” .
v i r t u a l vo id s i g n a l O p e n () = 0 ;
/ / P r o c e s s t h e command ” c l o s e ” .
v i r t u a l vo id s i g n a l C l o s e () = 0 ;

} ;

c l a s s TrunkFSM{

p r i v a t e :

/ / V e h i c l e t r u n k ” c l o s e d & l o c k e d ” s t a t e .
s t r u c t T r u n k S t a t e L o c k e d : p u b l i c I T r u n k S t a t e {

/ / C o n s t r u c t o r .
T r u n k S t a t e L o c k e d () {

s t d : : cou t<<” c l o s e d & l o c k e d ”<<s t d : : e n d l ;
}

/ / T r a n s i t i o n t o ” c l o s e d & u n l o c k e d ” .
vo id s i g n a l U n l o c k () o v e r r i d e {

new (t h i s) T r u n k S t a t e C l o s e d ;
}

/ / S e l f− t r a n s i t i o n : a l r e a d y l o c k e d .
vo id s i g n a l L o c k () o v e r r i d e {}

/ / I n v a l i d !
vo id s i g n a l O p e n () o v e r r i d e {}

/ / S e l f t r a n s i t i o n : a l r e a d y c l o s e d .
vo id s i g n a l C l o s e () o v e r r i d e {}

} ;

/ / Remaining s t a t e s . . .

p r o t e c t e d :

/ / The c u r r e n t s t a t e .
T r u n k S t a t e L o c k e d s t a t e ;

/ / P o i n t e r t o c u r r e n t s t a t e .
I T r u n k S t a t e ∗ s t a t e P o i n t e r ;

p u b l i c :

/ / C o n s t r u c t o r .
TrunkFSM () : s t a t e P o i n t e r (& s t a t e){}

/ / D e l e g a t e s t h e command ” un lo ck ” t o t h e s t a t e .
vo id s i g n a l U n l o c k () {

s t a t e P o i n t e r −>s i g n a l U n l o c k () ;
}

. . .
} ;

11

The state pattern was chosen for its clarity, extensibility
and maintainability. An analyzer module can use the Con-
textModules to check if a given payload is valid in the current
state. It accesses the ContextModules via a filter component
checking if the payload is in the set of known commands,
see figure 18, in this case whether it is a known remote trunk
control command (”unlock”, ”open”, ”close” or ”lock”). If

Fig. 18. V2X ALG context modules with input filter

the payload corresponds to a known command, a check is
performed if it is valid in the context of the trunk (e.g. the
”open” command would be invalid if the trunk was locked
and closed) and if it is valid in the context of the engine (e.g.
the ”open” command would be invalid if the vehicle was
driving). To perform such a check for a set of commands
(e.g. trunk control commands) for a context (e.g. the trunk)
using an FSM like in listing 1, it has to be extended as
described in section III-C. This can be done by defining an
interface for checking for any command if it is valid, see
listing 2. Each state has to implement this interface, which
corresponds to adding a transition for each possible trunk
command to the state. Instead of transitioning to a ”true” or
”false” state, a Boolean is returned. This way it is possible
to check for any command in any state if it is valid or not.
The implementation for the engine FSM is analogous to that
for the trunk FSM.

Listing 2. Extended FSM for context-sensitive analysis of trunk commands

s t r u c t ICheckTrunk {
/ / Check t h e command ” un lo ck ” .
v i r t u a l boo l c h e c k S i g n a l U n l o c k () = 0 ;
/ / Check t h e command ” l o c k ” .
v i r t u a l boo l c h e c k S i g n a l L o c k () = 0 ;
/ / Check t h e command ” open ” .
v i r t u a l boo l checkS igna lOpen () = 0 ;
/ / Check t h e command ” c l o s e ” .
v i r t u a l boo l c h e c k S i g n a l C l o s e () = 0 ;

} ;

s t r u c t Che ck edT ru nkS ta t e : p u b l i c I T r u n k S t a t e ,
ICheckTrunk {
/ /

} ;

c l a s s CheckedTrunkFSM{

p r i v a t e :

/ / V e h i c l e t r u n k ” c l o s e d & l o c k e d ” s t a t e .
s t r u c t T r u n k S t a t e L o c k e d : p u b l i c Ch eck edT ru nkS ta t e {

/ / C o n s t r u c t o r .
T r u n k S t a t e L o c k e d () {

s t d : : cou t<<” c l o s e d & l o c k e d ”<<s t d : : e n d l ;
}

/ / T r a n s i t i o n t o ” c l o s e d & u n l o c k e d ” .
vo id s i g n a l U n l o c k () o v e r r i d e {

new (t h i s) T r u n k S t a t e C l o s e d ;
}

/ / O the r t r a n s i t i o n s as i n ’ ’ c l a s s TrunkFSM ’ ’ . . .

/ / Check t h e command ” un lo ck ” .
boo l c h e c k S i g n a l U n l o c k () o v e r r i d e {

r e t u r n t r u e ;
}

/ / Check t h e command ” l o c k ” .
boo l c h e c k S i g n a l L o c k () o v e r r i d e {

r e t u r n f a l s e ;
}

/ / Check t h e command ” open ” .
boo l checkS igna lOpen () o v e r r i d e {

r e t u r n f a l s e ;
}

/ / Check t h e command ” c l o s e ” .
boo l c h e c k S i g n a l C l o s e () o v e r r i d e {

r e t u r n f a l s e ;
}

} ;

/ / Remaining s t a t e s . . .

. . .
} ;

To communicate via the V2X Application-Level Gateway
services running in the in-vehicle network have to register
with it. This is done via Remote Method Invocation (RMI)
over a specified interface, see figure 19, page 13. A remote
client, e.g. running on an ECU, registers V2X services with
the V2X Application-Level Gateway by calling the ”regis-
terService”-method of the contract interface ”IServiceReg-
istration” implemented by a V2XServiceRegistration stub,
which takes a service’s name, version, role (service provider
or consumer), provider IP, provider port and application
layer protocol (e.g. HTTP) as parameters. A skeleton on the
V2X Application-Level Gateway’s side then does the un-
marshalling and calls the remote implementation registering
the V2X service with the V2X Application-Level Gateway.
This registration is done via HTTPS to offer some degree of
cryptographic security.

12

Fig. 19. V2X service registration via RMI

B. Evaluation

The implementation was evaluated with the V2X
Application-Level Gateway software run on an Intel NUC
integrated in a test network representing an internal vehicle
network, see figure 20. In this network, consisting of an
Edgecore SDN switch and Intel NUCs and Raspberry
Pis representing vehicle ECUs, the scenario of remotely
controlling the vehicle trunk was simulated. For the
evaluation 4 additional programs were implemented and
deployed in the tests: a trunk control server allowing a
remote client to control a dummy vehicle trunk via a set
of defined commands, a trunk control client for remotely
controlling a vehicle trunk via a set of defined commands,
a V2X service registrator allowing to register V2X services
via HTTPS with the V2X Application-Level Gateway and
a dummy engine control holding the state of a dummy
engine and notifying registered observers upon any state
change. The trunk control server allows a remote client to
connect and control the dummy trunk with the following
set of simple commands: ”unlock”, ”open”, ”close” and
”lock”. It holds the state of the trunk (possible states:
”closed and locked”, ”closed and unlocked” and ”open”),
which changes upon receiving the appropriate command,
e.g. in the ”closed and unlocked” state receiving the ”open”
command triggers the transition to the ”open” state. Multiple
observers can register to be notified via HTTPS by the
trunk control server upon any state change. The trunk
control client connects to a trunk control server and sends
the commands allowing remote trunk control to it. The
communication between trunk control server and client is
via HTTPS. The dummy engine control holds the state
of the engine (possible states: ”driving” and ”stopped”),
which can be switched via keyboard. Multiple observers
can register to be notified via HTTPS by the dummy
engine control upon any state change. The trunk control
server, V2X service registrator and dummy engine control
were run on the Zonal Controller Rear Left. The trunk
control client was run outside the network. With this setup
the V2X Application-Level Gateway was evaluated by
checking if the vehicle trunk could be remotely controlled
over it securely. First the V2X Application-Level Gateway
registered itself with the trunk control server and dummy
engine control to receive notifications upon state changes,
so that it holds the vehicle state correctly at all time, which

is necessary for the context-sensitive semantic analysis.
Then the V2X service registrator registered the remote trunk
control service with the V2X Application-Level Gateway, so
that it can serve as a proxy for the trunk control server and
client. Next, the trunk control client connects to the V2X
Application-Level Gateway and it proactively establishes a
connection to the trunk control server. Now the trunk control
client can remotely control the vehicle trunk via the V2X
Application-Level Gateway. The V2X Application-Level
Gateway is tested by sending commands to it from the
trunk control client. There are 4 test classes: 1) valid
commands, 2) commands invalid independently from the
context, such as the ”lock”-command in ”open”-state, 3)
commands invalid only in a certain context, such as the
”open”-command in ”closed and unlocked”-state with the
engine in ”driving”-state and 4) unknown commands, such
as ”asdf”, which are invalid per se. These test classes cover
all possible attacks on the semantics of remotely controlling
a vehicle trunk. The V2X Application-Level Gateway is
expected to forward all valid commands to the trunk control
server and drop all invalid commands. First, valid commands
(test class 1) were sent with the vehicle engine state being
”stopped”. They were all forwarded, which is the expected
correct behaviour. Next, some invalid commands (test class
2), such as the ”lock”-command in ”open”-state and the
”open”-command in ”closed and locked”-state and unknown
commands (test class 4), were sent, with the vehicle engine
state being ”stopped”. They were all dropped, which is
the expected correct behaviour. Then the engine state was
switched to ”driving”. Again, first valid commands (test
class 1) were sent, then invalid and unknown (test class
4) commands were sent as well. Of the invalid commands
some were invalid independently from the context (test class
2) , such as the ”lock”-command in ”open”-state, while
others (test class 3) were only invalid with the engine in
”driving”-state, such as the ”open”-command in ”closed and
unlocked”-state. The valid commands were all forwarded,
while all invalid and unknown commands were dropped,
which is the expected correct behaviour. Sending valid,
unknown and invalid commands alternately also resulted
in all valid commands being forwarded and all invalid and
unknown commands being dropped. So the context-sensitive
semantic analysis of the V2X Application-Level Gateway
worked correctly in all of the tests, which cover all possible
attacks on the semantics of remotely controlling a vehicle
trunk.

V. CONCLUSIONS AND FUTURE WORK

In this work the concept of a V2X Application-Level
Gateway was developed. The main requirements of such
a gateway are that it offers application layer security
of the V2X communication, including the semantic
analysis of data, which is context-sensitive if necessary,
as well as proxy functionality and cryptographic security.
Additionally it enables bandwidth control of V2X traffic
and a role-based access to in-vehicle resources via

13

Fig. 20. In-vehicle test network

ACLs. From these requirements the architecture of the
V2X Application-Level Gateway, which is based on the
general best-practice application-level gateway software
architecture from [37], was derived. Based on this concept,
a prototype was developed. The prototype implementation
offers the following functionality: it serves as a proxy
for V2X services, allowing TCP-based communication
between vehicle-internal services and external services.
With application layer security the focus is on the context-
sensitive semantic analysis of data, which is implemented
exemplary for a service remotely controlling the vehicle
trunk via commands such as ”open” or ”lock”. To offer
some degree of cryptographic security HTTPS is used for
communication. The implementation was evaluated with
the V2X Application-Level Gateway software run on an
Intel NUC integrated in a test network representing an
internal vehicle network. In this network, consisting of
an Edgecore SDN switch and Intel NUCs and Raspberry
Pis representing vehicle ECUs, the scenario of remotely
controlling the vehicle trunk was simulated. It was shown
that the V2X Application-Level Gateway analysed incoming
trunk commands correctly and dropped them when they
were invalid in the current context, such as the ”open”
command while the (simulated) vehicle was driving.
The goal of future work is further development of the V2X
Application-Level Gateway by extending the functionality
providing application layer security by adding more rule
sets for the analysis of application data. The rules could
be structural or content-related and they could apply to

application headers or payloads. It could be examined if
such rules can be transferred from e.g. intrusion detection
systems. A possible extension of the context-sensitive
semantic analysis would be the analysis of sequences of
context states instead of just the current context state.
Also the remaining features of the V2X Application-Level
Gateway like bandwidth control and role-based access to
in-vehicle resources via ACLs could be further specified
and implemented in the prototype.
Apart from that, the analysis of the benefits and costs
of applying virtualisation to the V2X Application-Level
Gateway is a possible goal of future work. Another possible
area of research are the packet filter components of the
V2X Security Gateway securing the communication on the
network- and transport layer complementary to the V2X
Application-Level Gateway. The safe storage and protection
of cryptographic keys, certificates and configurations against
manipulation could be yet another subject of future research,
since potential attackers could have physical access to the
automotive hardware.
A security threat not addressed by the V2X Security
Gateway are Denial-of-Service (DoS) attacks. Although
most effective DoS countermeasures are network-based
[23], [15] and the action a single network node, in this
context a single vehicle, can take to protect itself from DoS
attacks is limited, a mechanism has been proposed that
enables single network nodes to contribute to security form
DoS attacks. The basic principle behind this mechanism,
known as Hashcash [4], assigns a cost to participating in

14

a protocol with a node, e.g. making a request, by having
the requester compute a token (the computation is based on
finding partial hash-collisions) for the node to proceed with
the protocol, e.g. process the request. Thus a DoS attack to
overwhelm the node with requests becomes unfeasible since
every request requires a significant amount of resources,
in this case, computational power. It could be analysed, if
mechanisms like Hashcash are a suitable measure for DoS
protection in the automotive context.

REFERENCES

[1] Abowd, G. D., Dey, A. K., Brown, P. J., Davies, N.,
Smith, M., & Steggles, P. (1999, September). Towards a
better understanding of context and context-awareness.
In International symposium on handheld and ubiquitous
computing (pp. 304-307). Springer, Berlin, Heidelberg.

[2] Aman, W., & Kausar, F. (2019). Towards a Gateway-
based Context-Aware and Self-Adaptive Security
Management Model for IoT-Based eHealth Systems.
INTERNATIONAL JOURNAL OF ADVANCED
COMPUTER SCIENCE AND APPLICATIONS, 10(1),
280-287.

[3] Apvrille, L., El Khayari, R., Henniger, O., Roudier,
Y., Schweppe, H., Seudi, H., ... & Wolf, M. (2010,
May). Secure automotive on-board electronics network
architecture. In FISITA 2010 world automotive congress,
Budapest, Hungary (Vol. 8).

[4] Back, A. (2002). Hashcash-a denial of service counter-
measure.

[5] Bellovin, S. M., & Cheswick, W. R. (1994). Network
firewalls. IEEE communications magazine, 32(9), 50-57.

[6] Bittl, S. (2017). Efficient Secure Communication in
VANETs under the Presence of new Requirements
Emerging from Advanced Attacks.

[7] Boban, M., Kousaridas, A., Manolakis, K., Eichinger,
J., & Xu, W. (2017). Use cases, requirements, and
design considerations for 5G V2X. arXiv preprint
arXiv:1712.01754.

[8] Bouard, A., Schanda, J., Herrscher, D., & Eckert, C.
(2012, November). Automotive proxy-based security
architecture for ce device integration. In International
Conference on Mobile Wireless Middleware, Operating
Systems, and Applications (pp. 62-76). Springer, Berlin,
Heidelberg.

[9] Brose, G. (2003). A gateway to web services
securitySecuring SOAP with proxies. In Web Services-
ICWS-Europe 2003 (pp. 101-108). Springer, Berlin,
Heidelberg.

[10] Bundesamt fr Sicherheit in der Informationstechnik (BSI):
Sichere Anbindung von lokalen Netzen an das Internet
(ISi-LANA), BSI-Standards zur Internet-Sicherheit (ISi-
S), Version 2.1 vom 26.08.2014

[11] Burnside, M., Clarke, D., Mills, T., Maywah, A., Devadas,
S., & Rivest, R. (2002, March). Proxy-based security
protocols in networked mobile devices. In Proceedings of
the 2002 ACM symposium on Applied computing (pp.
265-272). ACM.

[12] Calandriello, G., Papadimitratos, P., Hubaux, J. P.,
& Lioy, A. (2007, September). Efficient and robust
pseudonymous authentication in VANET. In Proceedings
of the fourth ACM international workshop on Vehicular
ad hoc networks (pp. 19-28). ACM.

[13] Calzavara, S., Focardi, R., Nemec, M., Rabitti, A., &
Squarcina, M. (2019, May). Postcards from the post-
HTTP world: amplification of HTTPS vulnerabilities
in the web ecosystem. In 2019 IEEE Symposium on
Security and Privacy (SP) (pp. 281-298). IEEE.

[14] Cereal C++ library. https://uscilab.github.io/cereal/
Accessed: 15.04.2020

[15] Dietzel, C., Smaragdakis, G., Wichtlhuber, M., &
Feldmann, A. (2018, December). Stellar: network attack
mitigation using advanced blackholing. In Proceedings
of the 14th International Conference on emerging
Networking EXperiments and Technologies (pp. 152-
164). ACM.

[16] Glass, M., Herrscher, D., Meier, H., & Schoo, P.
(2010). Seissecurity in embedded IP-based systems.
ATZelektronik worldwide, 5(1), 36-40.

[17] Gong, X. (2019). Security Threats and Countermeasures
for Connected Vehicles.

[18] Ghosh, M., Varghese, A., Kherani, A. A., & Gupta,
A. (2009, April). Distributed misbehavior detection in
VANETs. In 2009 IEEE Wireless Communications and
Networking Conference (pp. 1-6). IEEE.

[19] Haefner, K., & Ray, I. (2019, December). ComplexIoT:
Behavior-Based Trust For IoT Networks. In 2019 First
IEEE International Conference on Trust, Privacy and
Security in Intelligent Systems and Applications (TPS-
ISA) (pp. 56-65). IEEE.

[20] Hao, Y., Cheng, Y., Zhou, C., & Song, W. (2011). A
distributed key management framework with cooperative
message authentication in VANETs. IEEE Journal on
selected areas in communications, 29(3), 616-629.

[21] Idrees, M. S., Schweppe, H., Roudier, Y., Wolf, M.,
Scheuermann, D., & Henniger, O. (2011, March). Secure
automotive on-board protocols: a case of over-the-
air firmware updates. In International Workshop on
Communication Technologies for Vehicles (pp. 224-238).
Springer, Berlin, Heidelberg.

[22] Jeong, Y., Son, S., & Lee, B. (2019). The Lightweight
Autonomous Vehicle Self-Diagnosis (LAVS) Using
Machine Learning Based on Sensors and Multi-Protocol
IoT Gateway. Sensors, 19(11), 2534.

[23] Jonker, M., King, A., Krupp, J., Rossow, C., Sperotto,
A., & Dainotti, A. (2017, November). Millions of targets
under attack: a macroscopic characterization of the
DoS ecosystem. In Proceedings of the 2017 Internet
Measurement Conference (pp. 100-113). ACM.

[24] Jourdan, G. V. (2007). Centralized web proxy services:
Security and privacy considerations. IEEE Internet
Computing, (6), 46-52.

[25] Luotonen, A., & Altis, K. (1994). World-wide web
proxies. Computer Networks and ISDN systems, 27(2),
147-154.

15

[26] MacHardy, Z., Khan, A., Obana, K., & Iwashina, S.
(2018). V2X access technologies: Regulation, research,
and remaining challenges. IEEE Communications Surveys
& Tutorials, 20(3), 1858-1877.

[27] Morabito, R., Petrolo, R., Loscri, V., & Mitton, N. (2018).
LEGIoT: a Lightweight Edge Gateway for the Internet
of Things. Future Generation Computer Systems, 81, 1-15.

[28] Nguyen, T. D., Marchal, S., Miettinen, M., Fereidooni,
H., Asokan, N., & Sadeghi, A. R. (2019, July). DoT:
A federated self-learning anomaly detection system for
IoT. In 2019 IEEE 39th International Conference on
Distributed Computing Systems (ICDCS) (pp. 756-767).
IEEE.

[29] Nugur, A. (2017). Design and Development of an
Internet-Of-Things (IoT) Gateway for Smart Building
Applications (Doctoral dissertation, Virginia Tech).

[30] OpenSSL. https://www.openssl.org/
Accessed: 21.04.2020

[31] Pareigis, Stephan. State Machine.
https://autosys.informatik.haw-hamburg.de/codesamples/
state-machine/ Accessed: 15.04.2020

[32] Pes, M. D., Schmidt, K., & Zweck, H. (2017).
Hardware/Software Co-Design of an Automotive
Embedded Firewall (No. 2017-01-1659). SAE Technical
Paper.

[33] POCO C++ libraries. https://pocoproject.org/
Accessed: 15.04.2020

[34] Pretschner, A., Broy, M., Kruger, I. H., & Stauner,
T. (2007, May). Software engineering for automotive
systems: A roadmap. In Future of Software Engineering
(FOSE’07) (pp. 55-71). IEEE.

[35] Pugixml C++ library. https://pugixml.org/
Accessed: 15.04.2020

[36] Ruj, S., Cavenaghi, M. A., Huang, Z., Nayak, A., &
Stojmenovic, I. (2011, September). On data-centric
misbehavior detection in VANETs. In 2011 IEEE
Vehicular Technology Conference (VTC Fall) (pp. 1-5).
IEEE.

[37] Schmidt, D. C. (1996). A family of design patterns for
applications-level gateways. TAPOS, 2(1), 15-30.

[38] Schunter, M., et al. (2017, November). Vehicle to Cloud -
Research Challenges for Intelligent Vehicles. 15th Escar
Europe Conference, Berlin.

[39] Scott, D., & Sharp, R. (2002, May). Abstracting
application-level web security. In Proceedings of the
11th international conference on World Wide Web (pp.
396-407). ACM.

[40] Szancer, S. (2018, October). Architektur eines V2X
Automotive Security Gateways (Report, Hamburg
University of Applied Sciences).

[41] Wei, D., Darie, F., & Shen, L. (2013, February).
Application layer security proxy for smart Grid
substation automation systems. In Innovative Smart
Grid Technologies (ISGT), 2013 IEEE PES (pp. 1-6).
IEEE.

[42] Weimerskirch, A. (2011, October). V2X security &
privacy: the current state and its future. In ITS World
Congress, Orlando, FL.

[43] Wijnants, M., & Lamotte, W. (2007, June). The NIProxy:
a Flexible Proxy Server Supporting Client Bandwidth
Management and Multimedia Service Provision. In World
of Wireless, Mobile and Multimedia Networks, 2007.
WoWMoM 2007. IEEE International Symposium on a
(pp. 1-9). IEEE.

[44] Yang, X., Liu, L., Vaidya, N. H., & Zhao, F. (2004,
August). A vehicle-to-vehicle communication protocol
for cooperative collision warning. In Mobile and
Ubiquitous Systems: Networking and Services, 2004.
MOBIQUITOUS 2004. The First Annual International
Conference on (pp. 114-123). IEEE.

[45] Yang, L., Moubayed, A., Hamieh, I., & Shami, A. (2019).
Tree-based Intelligent Intrusion Detection System in Inter-
net of Vehicles. arXiv preprint arXiv:1910.08635.

16

