
Evaluating Requirements of High Precision
Time Synchronisation Protocols using Simulation

Lazar T. Todorov, Till Steinbach, Franz Korf, Thomas C. Schmidt
HAW-Hamburg, Department Informatik

Berliner Tor 7, D-20099 Hamburg, Germany
{lazartodorov.todorov, till.steinbach, korf, schmidt}@informatik.haw-hamburg.de

ABSTRACT
High precision time synchronisation protocols are used in
distributed real-time systems such as trains, planes, cars or
industrial installations. In time-triggered systems, with a
coordinated time division multiple access media allocation
strategy, the achievable precision of time synchronisation
among sending participants determines the quality of com-
munication and the available bandwidth. The simulation of
time synchronisation protocols allows to find problems at
the earliest time – in general, during the design and config-
uration – of a synchronised distributed system.

In this work we show a concept for the simulation of dis-
tributed real-time synchronisation protocols that uses dis-
crete event-based simulation. Our model for the OMNeT++
Framework is adaptable and thus allows for providing highly
accurate results or fast simulations. The precise simulation
of a real-time synchronisation protocol usually consumes
considerable simulation time. This paper presents an ap-
proach to speed up accurate simulation, based on recordings
of previous runs. We evaluate typical real-world use cases
for the introduced concept by simulating the AS6802 stan-
dard for time synchronisation. Our results show that the
simulation can help to reduce the effort of determining con-
figuration parameters for clock synchronisation protocols.
We further quantify the performance increase of our evolu-
tionary approach.

Categories and Subject Descriptors
I.6.5 [Simulation and Modeling]: Model Development;
C.2.2 [Computer-Communication Networks]: Network
Protocols—AS6802; C.4 [Performance of Systems]: Fault
tolerance

General Terms
Measurement, Performance, Reliability

Keywords
Network Synchronisation Simulation, AS6802, OMNeT++

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
OMNeT++ 2013 March 5th, Cannes, France.
Copyright 2013 ACM ...$10.00.

1. INTRODUCTION
High precision time synchronisation protocols are of vital

importance for most distributed real-time systems. Espe-
cially for systems that communicate time-triggered, with a
coordinated time division multiple access media allocation
strategy, the achievable precision of the time synchronisa-
tion among sending participants determines the quality of
communication and the amount of bandwidth that is us-
able. Most of the currently utilised protocols use a hierar-
chical synchronisation model with synchronisation masters
and clients. For failsafe operation they provide redundancy
or failure recovery strategies. Although most synchronisa-
tion protocols are verified, the simulation is important for
the design and configuration of a synchronised distributed
system. It covers aspects of the utilised hardware that in-
fluence the time from start-up until the synchronisation is
stable or the precision of the globally established time base.

In this work we provide a concept for the simulation of dis-
tributed real-time synchronisation protocols using discrete
event-based simulation in OMNeT++. We provide a model
for the simulation of distributed clocks that is adaptable,
and thus allows us to provide highly accurate results or fast
simulations. Based on the simulation of the AS6802 stan-
dard for the time-synchronisation in OMNeT++ [9] we give
typical real-world use cases for the introduced concept.

Simulating a distributed real-time synchronisation proto-
col consumes a lot of simulation time. Thus we introduce
a so called evolutionary approach that divides the model of
the clock synchronisation and the model of the network tech-
nology itself. This allows us to record the time-consuming
simulation of clock drift and synchronisation. Based on the
recordings following simulations can be significantly accel-
erated. The approach works as follows: During the first
simulation of a network the results of the real-time synchro-
nisation protocol are recorded. Subsequent simulation runs
of the same network exclude the real-time synchronisation.
Instead a modified clock model is being used: Based on the
results of the first simulation it emulates the clock behaviour
similar to a simulation that included the real-time synchroni-
sation protocol. The synchronisation results of the first run
can be divided into independent and self-contained parts.
To provide a wide range of time behaviour the clock model
will link up these subparts at random. This kind of speed
up is in particular useful in situations where the simulation
must run in real-time [7].

Time synchronisation protocols, which provide accuracy
below 10 µs, require coordination of hardware and software
components. For example the IEEE 1588 Precision Time

1. PCF (time)

1. PCF (time) 2. PCF (new time)

2. PCF (new time)

Endsystem
Sync Client

Endsystem
Sync Master

Switch
Compression

Master

Endsystem
Sync Master

Endsystem
Sync Client

2. PCF (new time)

2. PCF (new time)

Figure 1: Two step synchronisation approach: Pro-
tocol Control Frames of type IN are sent by the syn-
chronisation masters to the compression master, the
compressed time is then calculated and propagated
to all of the systems participants.

Protocol (PTP) [3] timestamps the protocol relevant frames
in hardware while the protocol itself can be implemented at
the network layer of the protocol stack. This paper shows
how event-based simulation can be used to discover which
time synchronisation accuracy can be achieved for a given
hardware and synchronisation protocol. Vice versa for a
given synchronisation protocol and accuracy requirements
a simulation based approach can extract the corresponding
hardware requirements.

Safety critical real-time systems are a typical field of appli-
cation for time-triggered systems. Such systems must handle
rare events and alarm floods that might lead to bandwidth
peaks. Due to the safety requirements, redundancy must
be provided by the time synchronisation protocol. Hence
failover situations must be analysed.

The paper is organised as follows: In Section 2, we intro-
duce AS6802 time-synchronisation and present preliminary
and related work. Section 3 presents the concepts and archi-
tecture of the developed clock and synchronisation model.
Based on an evaluation the use-cases are shown in Section
4. Finally, Section 5 concludes our contribution and gives
an outlook on future research.

2. BACKGROUND & RELATED WORK
There are several clock synchronisation protocols for dis-

tributed real-time systems. In this work we show our sim-
ulation concept based on the AS6802 clock synchronisation
protocol for time-triggered Ethernet (TTEthernet).

2.1 AS6802 Clock Synchronisation Protocol
The TTEthernet (AS6802) specification [11] was stan-

dardised in 2011 by the Society of Automotive Engineers
(SAE) [12]. It is a compatible extension of IEEE 802.3 stan-
dard switched Ethernet [4] and uses topologies formed of
full-duplex links. For supporting time-triggered (TT) com-
munication TTEthernet defines a fault-tolerant master-slave
time synchronisation protocol for establishing and maintain-
ing a synchronised time in the network.

The synchronisation of local clocks is done in a periodic
manner. This routine is called integration cycle. The syn-

Synchronisation Master Compression Master

CS
CS

CA
CA

IN

IN

H
andshake

Figure 2: Startup sequence: After initial synchro-
nisation has been done by the handshake protocol,
the synchronisation master sends the first integra-
tion frame to the compression master. The com-
pression master generates a new integration frame
in response and sends it back to the synchronisation
master.

chronisation is realised by periodic exchange of special Ether-
net frames between all devices at the beginning of each in-
tegration cycle. These frames are called Protocol Control
Frames (PCF). The Protocol defines three types of PCF
frames: coldstart frame (CS), coldstart acknowledge frame
(CA) and integration frame (IN). Depending on the system
timing requirements, each device can be configured as syn-
chronisation client (SC), synchronisation master (SM) or as
compression master (CM). Typical network configurations
use a switch as compression master and end systems as syn-
chronisation masters or clients.

To keep the local clocks synchronised, AS6802 specifies a
two-step synchronisation protocol, as depicted in Figure 1.
First, each synchronisation master sends an IN frame to all
compression masters. Each compression master calculates
an average value from the relative arrival times of these IN
frames and corrects its local clock by this value. In the
second step each compression master sends an IN frame with
its new local time to all synchronisation masters and clients.
Based on the received IN frames all synchronisation masters
and clients calculate a clock correction value, which is added
to the local clock.

For initial synchronisation at startup time or during the
restart of devices, AS6802 defines a fault-tolerant handshake
protocol (see Figure 2). After power on, each synchronisa-
tion master sends a coldstart frame (CS) to the compression
master. The compression master relays the CS frame back
to the synchronisation masters. After reception of the CS
frame the synchronisation master sends a coldstart acknowl-
edge (CA) frame to the compression master. The compres-
sion master relays the CA frame back to the synchronisa-
tion masters. After reception of a CA frame a synchronisa-
tion master waits for preconfigured timeout duration. Then
the synchronisation master sends integration (IN) frames to
the compression master according to the synchronisation ap-
proach given above (see Figure 1). Synchronisation clients
are not involved in this initial synchronisation sequence. As
shown in figure 1 they only receive IN frames from a com-
pression master to correct their local clock.

To understand the influence of clock drift on the time
synchronisation quality, a closer look on the synchronisation

clock_correction

permanence_pitsm_scheduled_receive_pit

acceptance_window = 2 x precision
t

Figure 3: Clock correction in synchronisation mas-
ter and client.

protocol is necessary. For simplicity we consider the clock
synchronisation of master and client only. To re-establish
the dispatch order of messages and to provide remote clock
reading during synchronised operation, AS6802 defines the
permanence point in time concept (PPT), which is based
on a transparent clock mechanism. All network devices that
impose a delay on the transmission, reception, or forwarding
add their delay to the pcf transparent clock field in the PCF.
The worst case delay (max transmission delay) between any
synchronisation master (SM) and the compression master
(CM) can be calculated offline. The precision is a key syn-
chronisation parameter that is determined offline. It defines
the worst-case deviation of any two correct clocks in the net-
work. max transmission delay and precision are defined for
the whole network.

After reception of a PCF each device calculates the per-
manence delay according to Equation 1:

permanence delay = max transmision delay

−pcf transparent clock
(1)

The PCF is delayed for this time. Afterwards the perma-
nence point in time (PPT) is reached (see Equation 2):

permanence pit = receive pit+ permanence delay (2)

To re-establish the dispatch order of PCFs the PPT calcu-
lation is done for every PCF. The offset between any two
PPTs is equal to the offsets between the send points in time
of the corresponding PCFs. Thus, the PPT concept is used
for remote clock reading and calculation of clock correction
offsets in all devices.

During the first step of the synchronisation protocol, each
synchronisation master (SM) sends a PCF (IN frame) to
the compression master (CM) (see Figure 1). Based on the
PPTs of all PCFs the CM corrects its local clock according
to the local clocks of all SMs. The new local time is utilised
by the CM to calculate the dispatch point in time of the PCF
that will be send back to all SMs. For all SMs the receive
point in time (sm scheduled receive pit) is calculated offline
as follows:

sm scheduled receive pit =

2 ∗max transmission delay

+compression master delay

(3)

An SM opens an acceptance window of size 2× precision
around sm scheduled receive pit and monitors the PPT of
the PCF signalled within this window (see figure 3). Since
max transmission delay and compression master delay are
constant, the position of the PPT within the acceptance
window depends on the dispatch point in time of the PCF
defined by the CM. A PCF with a PPT outside this win-
dow points to a SM error and will be forwarded to an error
handling mechanism.

The clock correction offset is calculated as follows:

clock correction = permanence pit

−sm scheduled receive pit
(4)

The clock correction values are added to the local clock vari-
able at the offline configured point in time.

From the equations shown above, we can conclude that
in an ideal environment without considering the effect of
rounding and digitalisation errors, the quality of synchroni-
sation directly depends on the accuracy that can be achieved
with the hardware devices.

2.2 Related Work
Praus et. al. [10] introduced a framework for the simula-

tion of fault tolerance in the clock synchronisation of indus-
trial automation networks. Similar to our approach, their
implementation of the protocol is based on the OMNeT++
INET Framework. The model divides the clock synchronisa-
tion in software and hardware parts where separate modules
are used for each component.

Liu and Yang showed a simulation of the IEEE 1588 PTP
synchronisation protocol [3] in OMNeT++ [8]. The authors
conclude that the simulation can show the synchronisation
performance and time to converge. Giorgi and Narduzzi
[2] use an OMNeT++ based model to assess the suitability
of IEEE 1588 PTP in relation to network topologies and
operating conditions.

Ferrari et. al. [1] analysed the synchronisation accuracy
of concurrent real-time synchronisation protocols in simu-
lation. The work shows that the simulation can make the
tradeoff between performance reduction and the sharing of
the same physical infrastructure visible and allows for tuning
of network parameters.

3. CONCEPT & ARCHITECTURE
One key element for the simulation of a distributed syn-

chronisation algorithm is the model of the local clock. It
defines the accuracy of the simulation results while at the
same time majorly influences the simulation performance.

The most important attribute of a clock is the durabil-
ity of the length of each clock tick. All clocks have a cer-
tain inaccuracy called frequency drift [5,14]. Frequency drift
may occur due to the physical architecture of the clock or
due to environmental conditions, in particular temperature
changes. These drifts may have significant impact on the
overall synchronisation behaviour and must be carefully in-
cluded in the clock model.

An accurate model of a local clock would model the drift
by simulating each tick of the clock as a separate event. Such
a model allows to adapt the tick length directly related to the
simulated environmental conditions and provides the most
realistic simulation results. At the same time, this approach
extraordinarily slows down the simulation, as it requires to
simulate a significant amount of events that are not directly
associated with the communication protocol.

The International Telecommunication Union defines fre-
quency stability as the frequency change within a given time
interval caused by spontaneous and/or environmentally in-
fluence [5]. According to the frequency stability a fast clock
model simulates several ticks in one step. The frequency sta-
bility or clock drift is then simulated by a drift factor that
is assumed constant for a configurable interval. Equation 5

Figure 4: Simulated Modules in an endsystem with
synchronisation.

shows the formula for the calculation of a clock event after
δ ticks:

t′ = t+ δ ∗ (∆tTick + ∆tDrift) (5)

In this model, t′ defines the simulation time of the clock
event after δ ticks, by using t as the current simulation time,
∆tTick as the fixed time for one tick (without clock drift),
and ∆tDrift as the average drift for a configurable amount
of time.

The overhead for calculating the clock drift is then config-
urable by the amount of time the drift is assumed to remain
constant. Previous work has shown that the precision of this
approach mostly depends on the frequency stability of the
clock and the number of events that are scheduled during
the constant time interval [13]. We found that a valid and
sufficiently accurate simulation for time-triggered systems
under normal conditions can be achieved with an interval
of one communication cycle, as the variance of the aver-
age drift is very low [14]. Our approach does not simulate
ageing processes, but the frequency drift of different ageing
and environmental conditions can be simulated by changing
∆tDrift.

To support an adaptable solution we made the clock model
exchangeable. This way the simulation developer can choose
from different abstraction levels of clock models to achieve
the desired precision in the simulation.

We use exchangeable clock modules to realise an evo-
lutionary approach. In the beginning the synchronisation
behaviour of a distributed system is simulated using the
complex and simulation time consuming time synchronisa-
tion protocol. During this simulation clock correction and
∆tDrift will be recorded for each device and each integra-
tion cycle. Using these results future simulations of the same
network will run without simulating the time synchronisa-
tion protocol but achieve the same temporal behaviour as
a simulation including time synchronisation. In detail, for
each integration cycle one data set of the first simulation
run is mapped. Instead of using the clock correction of the
time synchronisation protocol, the recorded clock correction
value is added to the local clock. Since the PCFs are sent at
a preconfigured time of each integration cycle, the required
bandwidth for synchronisation frames is still reserved, but
the PCF is not simulated. For each integration cycle the
clock correction and ∆tDrift data set is selected out of the
data stored during the first simulation.

Figure 5: AS6802 network example.

Assuming we have several devices with a given clock drift
and we build a network with a given slot length for time-
triggered transmission. This slot shall have a minimal length
equal to the acceptance window. To calculate the minimal
length of this window we need to calculate the maximal pos-
sible synchronisation accuracy. It is the minimal possible
precision value that can be achieved with the hardware de-
vices. Since the precision is defined as the worst case de-
viance between any two correct local clocks in the network,
we choose the two clocks with the largest drift value x’ and
y’. Therefore we can calculate the precision as follows:

precision = (x′ + y′) × integration cycle duration (6)

In our implementation each device has a configurable pa-
rameter max clock drift. Thus we can simulate different
topologies and configuration options with different hardware
clocks and analyse whether the devices meet the require-
ments or determine the requirements for a network. For
example the minimum length of the slot for TT frames that
can be achieved with the given devices.

Our simulation model consists of several submodules (see
Figure 4). The scheduler hosts the local clock. It offers
an interface to register tasks and to adjust the clock (clock
correction). The speed as well as the drift of the clock is
configurable, according to the abstraction level of the cho-
sen clock drift implementation. The sync module hosts the
logic for the synchronisation protocol. Incoming and outgo-
ing frames are routed through buffers for best-effort or real-
time frames. These buffers interact with the physical layer.
In our implementation of the synchronisation according to
the AS6802 specification, the protocol logic is implemented
in an automaton pattern. This allows us to reproduce the
specified behaviour while keeping the implementation plat-
form independent. Later on, the simulated protocol can
be transferred in a real-world prototype without extensive
changes in the program code.

4. USE-CASES & RESULTS
In the evaluation we show how simulation parameters and

timing requirements are obtained from the simulation and
how our evolutionary approach accelerates the simulation of
large synchronised networks.

max_transmission_delay
max_transmission_delay

sm_cs_offset
max_transmission_delay

 max_observation_window

+ calc_overhead
dispatch_delay
max_transmission_delay

sm_ca_offset
max_transmission_delay
dispatch_delay
max_transmission_delay

Synchronisation Master

Compression Master

tx

tx

rx

rx
tforward_delay

Startup Time

 max_observation_window

+ calc_overhead

CS CA

CS

CS

CS

CA

CA

CA

IN

IN

IN

IN

Figure 6: Estimation of startup time (time to sync).

example 1 example 2 example 3
sync drift max time to drift max time to drift max time to

Device config change drift sync [µs] change drift sync [µs] change drift sync [µs]
Unit 1 SM ±100ps 20ps 209.843830 ±100ps 20ps 209.843830 ±20ps 1ps 209.839974
Unit 2 SC ±150ps 3ps 209.923832 ±150ps 3ps 209.923832 ±23ps 7ps 209.919979
Unit 3 SM ±300ps 34ps 209.923833 ±300ps 34ps 209.923833 ±15ps 2ps 209.839974
Unit 4 SM ±200ps 20ps 209.923843 ±212ps 20ps 209.923843 ±22ps 7ps 209.919978
Switch 1 CM ±70ps 14ps 202.883831 ±70ps 14ps 202.883831 ±15ps 4ps 202.879975

Table 1: Results of the hardware configuration analysis for the example configurations.

4.1 Hardware Configuration Analysis
In our first use case we show the simulation of three differ-

ent hardware configurations. The analysis uncovers whether
the configuration meets the given network requirements. The
global parameters are:

• clock tick : 80 ns

• precision: 6400 ns

• cycle duration: 12500 ticks = 1 ms

We use a simple network as depicted in figure 5. The net-
work consists of four end systems and one switch connected
in a star topology. Unit 1, unit 3, and unit 4 are configured
as synchronisation master, unit 2 as synchronisation client
and switch 1 as the compression master. The scale exponent
of OMNeT++ is configured to picoseconds time resolution.

We calculate the expected precision offline. In example 1
and 2 the units with the largest drift values are unit 3 and
unit 4, in the third case unit 2 and unit 4:

max clock deviation(ex1) = unit3 + unit2

= 300ps+ 200ps

= 500ps

(7)

max clock deviation(ex2) = unit3 + unit2

= 300ps+ 212ps

= 512ps

(8)

max clock deviation(ex3) = unit2 + unit4

= 23ps+ 22ps

= 55ps

(9)

With a cycle of 1 ms (equal to 12500 ticks), the calculated
worst case deviation is:

precision(ex1) = (12500ticks× 500ps) = 6250ns (10)

precision(ex2) = (12500ticks× 512ps) = 6400ns (11)

precision(ex3) = (12500ticks× 55ps) = 687.5ns (12)

These values are within our required value and we ex-
pect that the network will enter synchronised state. In or-
der to check this hypothesis, we run the simulation for 120s
and measure the time until a tentative synchronisation is
achieved by the protocol startup service (time to sync)1.
This means we measure the time from synchronisation start
until the first integration cycle after the first synchronised
state (see Table 1).

The best-case startup time (time to sync) can be calcu-
lated as the sum of synchronisation timing parameters (see
Figure 6). Equation 13 shows the calculation of the best-
case startup time:

time to sync = (6 ∗max transmission delay

+2 ∗ (max observation window + calc overhead)

+2 ∗ dispatch delay + forward delay

+sm cs offset+ sm ca offset

= 6 ∗ 87ticks+ 2 ∗ (80ticks+ 5ticks) + 2 ∗ 161ticks

+0ticks+ 504ticks+ 1100ticks) ∗ 80
ns

tick

= 2681ticks ∗ 80
ns

tick
= 209.44µs

(13)

1The protocol designers claim that the protocol provides
defined worst-case synchronous startup time [6].

0 , 0 0 , 5 1 , 0 1 0 2 0 3 0 4 0 5 0
- 5 0
- 2 5

0
2 5
5 0

- 1 0 0

0

1 0 0

clo
ck

co
rre

ctio
n [

tick
s]

t i m e [s]

clo

ck
dri

ft [
ps

]

Figure 7: Clock correction for a single clock (unit1).

The expected startup time slightly differs (<550 ns) from
the actual times simulated (see Table 1). The divergence is
due to the accumulated imprecision of all calculations done
in the devices. The smallest schedulable unit is one tick,
thus all calculations are done in ticks as well. The roundoff
error is at maximum 80 ns (1 tick) per calculation.

The protocol behaviour during the synchronised state is
shown in figure 7. The upper graph shows the clock drift
of one unit (unit1) in the sample network, while the lower
graph shows the clock correction values. In the zoomed in-
terval it can be observed how the protocol corrects the clock
drift by correcting the local clock in each integration cycle.
The more the clock drifts in one direction the more ticks are
required to correct the clock.

4.2 Timing Requirements Analysis
The second use case represents a configuration with two

very inaccurate clocks (see Table 2). Equation 14 and 15
calculate the achievable precision.

max clock deviation(ex4) =

unit4 + unit1 =

700ps+ 800ps = 1500ps

(14)

precision(ex4) = (12500ticks× 1500ps) = 18750ns (15)

Since the calculated value is rather high, the analysis of
clock synchronisation is of interest to analyse the stability
of operation.

sync max drift time to
Device config drift change sync [µs]
Unit 1 SM ±800ps 30ps -
Unit 2 SC ±0ps 0ps -
Unit 3 SM ±0ps 0ps -
Unit 4 SM ±700ps 3ps -
Switch 1 CM ±0ps 0ps -

Table 2: Configuration of example 4.

5 0 1 0 0 1 5 0 2 0 0 2 5 0
0

2 0
4 0
6 0
8 0

- 5 0 0
- 4 0 0
- 3 0 0
- 2 0 0
- 1 0 0

0
1 0 0

clo
ck

co
rre

ctio
n [

tick
s]

t i m e [m s]

l o s s o f c l o c k
s y n c h r o n i s a t i o n

 u n i t 1
 u n i t 2
 u n i t 3
 u n i t 4
 s w i t c h 1

clo
ck

dri
ft [

ps
]

5 1 2 p s (m a x i m u m a c c e p t e d c l o c k d r i f t)

Figure 8: Protocol simulation with synchronisation
loss due to high clock drift.

The simulation provides the number of stable cycles before
entering unsynchronised operation. According to the simu-
lation results (see Figure 8), synchronisation will be lost in
cycle 220. In cycle 220 unit1 reaches a clock drift peak value
of 520 ps seconds which is greater than our limit of 512 ps.
The given precision of 6400 ns is equal to 12500 × 512ps de-
viance. This is the reason for losing synchronisation. The
simulation discovers that the given configuration does not
meet the requirements.

4.3 Simulation of Large Networks
Based on our evolutionary approach, the last use-case

shows how to simulate large networks without reducing the
quality of the simulation. The network parameters are equal
to example 3. We will use two configurations with different
numbers of devices to illustrate the achievable acceleration.

First we run a simulation that includes the time synchroni-
sation protocol (based on PCF). This run records
clock correction and ∆tDrift values. Afterwards we run the
simulation again without the time synchronisation protocol,
based on the clock correction and ∆tDrift values recorded
during the first run. Due to the Simsec/sec ratio (see Ta-
ble 3) we can conclude that the separate simulation of PCF
traffic leads to a significant acceleration of the simulation.
In our tests we were able to run the simulation over 40 times
faster, allowing us to precisely simulate even large networks
on a standard consumer computer in real-time.

network nodes Simsec/sec accel. factor
with PCF 5 ≈0.67 -

without PCF 5 ≈8.5 ≈12.68
with PCF 9 ≈0.22 -

without PCF 9 ≈4.4 ≈20.00
with PCF 23 ≈0.04 -

without PCF 23 ≈1.63 ≈40.75

Table 3: Simulation results of large networks with
and without the evolutionary approach.

5. CONCLUSION & OUTLOOK
Real-time clock synchronisation protocols gain importance

in several application domains. Especially during design and
configuration, simulation is a strong tool to obtain system
parameters and network metrics. This paper presents a sim-
ulation concept for real-time clock synchronisation protocols
based on the AS6802 specification.

By showing different examples in our evaluation, we intro-
duce relevant use-cases for the proposed simulation concept.
With given parameters the simulation can obtain central
metrics of the synchronisation protocol such as startup du-
ration (time to sync) or synchronisation precision. Further
it can assess the required precision of local clocks for a set
of given system accuracy requirements.

By separating the simulation of clock synchronisation and
operation, we introduce an evolutionary approach, that
speeds up the simulation of synchronised distributed sys-
tems significantly. To achieve this, the clock synchronisation
is simulated while the clock behaviour and clock-correction
is recorded. Afterwards the synchronisation can be omitted
while the local clocks of all simulated devices are fed with
the recorded values. This provides a performant simulation
without losing accuracy.

For our future work we plan more detailed clock models.
A model where the simulated drift of the clocks of all de-
vices is artificially synchronised with each other will improve
simulation coverage. Such a module allows us to specifically
generate worst case scenarios where the synchronisation has
the largest difference in clock drift. Further improvements of
the clock model will contain temperature and voltage mod-
els to simulate local clocks in changing environments – such
as in-car scenarios – most accurately.

The implementation of the synchronisation model is cur-
rently prepared for OpenSource publication. A first beta
release can be found on the project webpage (http://core.
informatik.haw-hamburg.de).

Acknowledgments
This work is funded by the Federal Ministry of Education
and Research of Germany (BMBF) within the RECBAR
project.

6. REFERENCES
[1] P. Ferrari, A. Flammini, S. Rinaldi, and G. Gaderer.

Evaluation of clock synchronization accuracy of
coexistent Real-Time Ethernet protocols. In IEEE
International Symposium on Precision Clock
Synchronization for Measurement, Control and
Communication, pages 87–91, Piscataway, NJ, USA,
Sept. 2008. IEEE Press.

[2] G. Giorgi and C. Narduzzi. Modeling and Simulation
Analysis of PTP Clock Servo. In IEEE International
Symposium on Precision Clock Synchronization for

Measurement, Control and Communication (ISPCS)
2007, pages 155–161, Piscataway, NJ, USA, Oct. 2007.
IEEE Press.

[3] Institute of Electrical and Electronics Engineers. IEEE
Standard for a Precision Clock Synchronization
Protocol for Networked Measurement and Control
Systems. Standard IEEE Std. 1588, IEEE, 2002.

[4] Institute of Electrical and Electronics Engineers. IEEE
802.3: LAN/MAN CSMA/CD Access Method.
Standard IEEE 802.3-2005, IEEE, 2005.

[5] International Telecommunication Union -
Telecommunication Standardization Sector. G.810
Definitions and Terminology for Synchronization
Networks. Technical Report Series G: Transmission
Systems and Media, Institution, Geneva, Switzerland,
Aug. 1996.

[6] M. Jakovljevic. Deterministic Ethernet: SAE AS6802
”Time-Triggered Ethernet. SAE International, Nov.
2011.

[7] O. Karfich, F. Bartols, T. Steinbach, F. Korf, and
T. Schmidt. A Hardware/Software Platform for
Real-time Ethernet Cluster Simulation in OMNeT++.
In Proceedings of the 6th International ICST
Conference on Simulation Tools and Techniques, 2013.
to appear.

[8] Y. Liu and C. Yang. OMNeT++ based modeling and
simulation of the IEEE 1588 PTP clock. In
International Conference on Electrical and Control
Engineering (ICECE), 2011, pages 4602–4605,
Piscataway, NJ, USA, Sept. 2011. IEEE Press.

[9] OMNeT++ Community. OMNeT++ 4.2.2.
http://www.omnetpp.org.

[10] F. Praus, W. Granzer, G. Gaderer, and T. Sauter. A
simulation framework for fault-tolerant clock
synchronization in industrial automation networks. In
IEEE Conference on Emerging Technologies and
Factory Automation 2007, pages 1465–1472, Sept.
2007.

[11] SAE. Time-Triggered Ethernet AS6802. SAE
Aerospace, Nov. 2011.

[12] SAE - AS-2D Time Triggered Systems and
Architecture Committee. Time-Triggered Ethernet
(AS 6802), 2009.

[13] T. Steinbach, H. Dieumo Kenfack, F. Korf, and T. C.
Schmidt. An Extension of the OMNeT++ INET
Framework for Simulating Real-time Ethernet with
High Accuracy. In Proceedings of the 4th International
ICST Conference on Simulation Tools and Techniques,
pages 375–382, New York, Mar. 2011. ACM-DL.

[14] D. B. Sullivan, D. W. Allan, D. A. Howe, and F. L.
Walls, editors. Characterization of Clocks and
Oscillators. National Institute of Standards and
Technology, Boulder, Colorado, 1990. technical note
1337.

http://core.informatik.haw-hamburg.de
http://core.informatik.haw-hamburg.de

	Introduction
	Background & Related Work
	AS6802 Clock Synchronisation Protocol
	Related Work

	Concept & Architecture
	Use-Cases & Results
	Hardware Configuration Analysis
	Timing Requirements Analysis
	Simulation of Large Networks

	Conclusion & Outlook
	References

