Network Anomaly Detection in Cars based on Time-Sensitive Ingress Control

IEEE VTC2020-Fall, Online
Philipp Meyer, Timo Häckel, Franz Korf and Thomas C. Schmidt
Dept. Computer Science, HAW Hamburg, Germany
Communication over Real-time Ethernet research group
Outline

I. Time-Sensitive Networking (TSN) in Cars
II. Detecting Network Anomalies with TSN
III. Automotive Case Study
IV. Conclusion & Outlook
Time-Sensitive Networking (TSN) in Cars
Time-Sensitive Networking in Cars
Current Architecture

• Multitude of Electronic Control Units
• Connected over proprietary bus technologies
• In distinct Domains
Time-Sensitive Networking in Cars
Future Architecture

- Flat Ethernet
- TSN deploys QoS on layer 2
- Integrated into global communication
- Attacks could result in fatal consequences
Time-Sensitive Networking in Cars
Anomaly Detection on the Link Layer

• Corruption can violate QoS and safety
 • Safety is dependent on QoS
 • Layer 2 guarantees QoS
• Fast and reliable on the lowest possible layer

Multi-sided measures to secure layer 2 are needed.
Time-Sensitive Networking in Cars
Per-Stream Filtering and Policing (Qci)

- Network design specifies traffic
- Traffic behavior is known
- Qci enforces known traffic parameters

The Qci configuration serves as an implicit description of regular traffic behavior on the link layer.
II. Detecting Network Anomalies with TSN
Detecting Network Anomalies with TSN
Network Anomaly Detection System (NADS)

1. A violation of a Qci rule indicates an abnormal behavior:

2. Anomaly indicators:
 • Frame drops
 • Missing frames
 • ...

3. Indicators can remain free of false positives:
 • Frame drops never occur with valid behavior
 • ...

4. Switches can communicate statistics to a central instance:
 • SDN controller
 • ...
Detecting Network Anomalies with TSN

Example

• Combine Qci & SDN into a NADS
• SDN controller application gathers Qci statistic
• Controller application enables further analysis

Qci misbehavior is traced without additional hardware.
III. Automotive Case Study
Automotive Case Study
Simulation Environment (github.com/CoRE-RG)

<table>
<thead>
<tr>
<th>SignalsAndGateways</th>
<th>SDN4CoRE</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAN<->CAN / Ethernet <->CAN</td>
<td>Programmable Switching for IEEE 802.1Q / TSN / AVB NetConf</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>FiCo4OMNeT</th>
<th>CoRE4INET</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAN</td>
<td>IEEE 802.1Q / TSN / AVB AS6802</td>
</tr>
<tr>
<td>Flexray</td>
<td>OpenFlow</td>
</tr>
</tbody>
</table>

	INET framework
	Ethernet
	Internet Protocol
	TCP / UDP

<table>
<thead>
<tr>
<th>OMNeT++ discrete event simulator</th>
</tr>
</thead>
</table>
Automotive Case Study Topology

- Based on real in-car communication matrix
- Zonal 100 Mbit/s Ethernet topology
- TSN forwarding & filtering on each port
- **Anomaly indicator:** Dropping of frames

Observed Backbone Communication
- Synchronous safety critical
- Asynchronous data stream
- CAN tunneling

Qci configuration
- Timing
- Bandwidth
- Frame size
- Undefined streams will be dropped
Case Study Detection

- Attack:
 - Source is the original sender
 - Frame injection (DoS)
 - Uniformly distributed size
 - Starts at 10s
- Demonstrates detection of invalid behavior for individual streams

There are no false positive anomaly detections.
Case Study
False Negatives

• Stream bandwidth is 7 Mbit/s
• Dropped traffic is related to the attack bandwidth
• No frame drops below 7 Mbit/s

There are false negatives.
Case Study Mitigation

- Ingress filtering & policing:
 - Drops invalid/surplus frames
- SDN controller:
 - Reconfigure or disable flows
 - Reconfigure TSN forwarding and ingress control

![Bar chart showing end-to-end latency for LIDAR FrontLeft data stream with and without attacks.](image)
Conclusion
Conclusion

• More efficient on the lowest possible layer
• Link-layer anomaly detection with Qci
• Can perform with zero false positive detections
• Does not require additional hardware
• Mitigation advantages through Qci & SDN

In the future:
• New or correlated meters can reduce false negatives
• Further evaluate benefits and limits
Acknowledgements

This work is funded by the German Federal Ministry of Education and Research (BMBF) within the SecVI project.

secvi.inet.haw-hamburg.de